1. 首页 > 科技快讯 >

「学我测」原子吸收光谱法常用知识,你知道多少?

原子吸收光谱的原理是什么?

光电管原理是光电效应,光电管接受到光照时,PN结两侧的P区和N区因本征激发产生的少数载流子浓度增多,若光电管接在闭合回路中,就会产生电流。

「学我测」原子吸收光谱法常用知识,你知道多少?「学我测」原子吸收光谱法常用知识,你知道多少?


也就是说,光电管无需外部提供电源(施加电压),即可在闭合回路中产生电流,但是,只要产生了电流,光电管两端的电压必然不为零。

被光束照射到的电子会吸收光子的能量,但是其中机制遵照的是一种非全有即全无的判据,光子所有能量都必须被吸收,用来克服逸出功,否则这能量会被释出。

扩展资料:

当一束光子能量不足以引起电子-空穴产生的激光照射在样本上,可在光束方向上于样本两端建立电势VL,其大小与光功率成正比。

电子从阴极达到该区,获能量越来越大,超过原子电离能,引起大量碰撞电离,雪崩电离过程集中发生在这里。产生电离后电子很快离开,这里形成了很强的正空间电荷,引起电场分布畸变,管压大部分降在此处和阴极间。

光电流光谱无需常规光谱仪的光学系统,从紫外、可见、红外到微波都可产生光电流效应。光电流光谱有8个数量级的动态范围,灵敏度高、噪声小,是一种超灵敏的光谱技术。

「学我测」原子吸收光谱法常用知识

原子吸收光谱法常用知识

1、 原理

原子吸收光谱法:根据被测元素基态原子蒸气对其原子特征辐射的吸收作用来进行元素定量分析的方法。

原子吸收分析过程:试液喷射成细雾与燃气混合后进入燃烧的火焰中,被测元素在火焰中转化为原子蒸气。气态的基态原子吸收从光源发射出的与被测元素吸收波长相同的特征谱线,使该谱线的强度减弱,再经分光系统分光后,由检测器接收。产生的电信号,经放大器放大,由显示系统显示吸光度或光谱图。

原子化温度:原子化过程常用的火焰温度多数低于 3000K。

朗伯-比尔定律:当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光 度A与吸光物质的浓度c及吸收层厚度b成正比。即:A=Kbc。

测量方式:积分吸收、峰值吸收。积分吸收需要采用高分辨率的单色器,一般采用测量峰值吸收代替积分吸收的方法。

2、 设备结构

原子吸收光谱仪由光源、原子化系统、分光系统、检测系统和读出装置等五部分组成。使用比较广泛的是单道单光束和单道双光束原子吸收光谱仪。

光源:锐线光源,发射被测元素的特征共振辐射。广泛的是空心阴极灯和无极放电灯。空心阴极灯由阳极(钨棒)、阴极(纯金属、合金或化合物)、载气(惰性气体Ne、Ar)。

原子化系统:火焰原子化包括两个步骤,首先将试样溶液变成细小雾滴(即雾化阶段),然后使雾滴接受火焰供给的能量形成基态原子(即原子化阶段)。火焰原子化器由喷雾器(雾化器)、雾化室(预混合室)和燃烧器等部分组成,常用的是预混合型原子化器。

分光系统:分为外光路(锐线光源和两个透镜)和单色器(入射和出射狭缝、反射镜和光栅)。单色器能分开Mn 279.5nm和279.8nm即可。

检测系统:光电倍增管(光信号转电信号)、同步检波放大器(放大电信号)、对数变换器(电信号转吸光度)。

原子吸收的干扰包括:物理干扰(如试液的黏度、表面张力、相对密度等)、化学干扰(如对钙的干扰)、电离干扰、光谱干扰。

物理干扰消除:配制与被测试样组成相近的标准溶液;采用标准加入法;稀释法。

化学干扰消除:选择合适的原子化方法(改变火焰类型或使用高温火焰);加入释放剂(LaCl3消除对Ca 的干扰);加入保护剂(EDTA 消除 PO43- 对 Ca 2+ 的干扰);石墨炉中加入基体改进剂(汞极易挥发,加入硫化物生成,灰化温度可提高到300 );化学分离(离子交换、沉淀分离、有机溶剂萃取)。

电离干扰消除:加入过量的消电离剂(测钙时加入过量的KCl溶液抑制电离干扰)。

光谱干扰:谱线干扰(减小狭缝宽度、灯电流或另选谱线)、背景干扰(邻近线校正、氘灯背景校正、塞曼效应背景校正、自吸收效应背景校正)。

氘灯扣背景:氘灯只能校正吸光度小于 1 的背景,而且只适于紫外光区的背景校正,可见光区的背景校正可用碘钨灯和氙灯。

塞曼扣背景:塞曼效应是指谱线在外磁场作用下发生分裂的现象。先利用磁场将吸收线分裂为具有不同偏振方向的组分,再用这些分裂的偏振成分来区别被测元素和背景吸收。塞曼效应校正背景可以全波段进行,它可校正吸光度高达 1.5 2.0 的背景,因此塞曼效应背景校正的准确度比较高。

3、 定量分析及关键指标

定量分析方法:标准曲线法、标准加入法、内标法、稀释法(实质是标准加入法)。

灵敏度(特征浓度):能产生1%吸收(即吸光度值为0.0044)信号时所对应的被测元素的质量浓度(ug.ml-1/1%)或质量分数(ug.g-1/1%)。

检出限(D ):表示被测元素能产生的信号为空白信号值的标准偏3倍(3σ)时元素的质量浓度或质量。

4、测定条件的选择

分析线:一般选用元素的共振线(灵敏线)作为分析线。测定高含量、消除邻近光谱线的干扰、紫外区有吸收时可选择非共振线(次灵敏线)。

灯电流:工作电流建议采用额定电流的 40% 60%。

火焰:空气-乙炔火焰(2500K)、N2O-乙炔火焰(2990K)、空气-氢火焰(2318K)。

燃助比:化学计量火焰(1:4)、富燃火焰(1.2 1.5:4)、贫燃火焰(1:4 6)。

燃烧器高度:一般在燃烧器狭缝口上方 2 5mm。

进样量:一般在 3 6mL/min。

光谱通带:光谱通带是指单色器出射光谱所包含的波长范围。光谱通带宽度=线色散率倒数 狭缝宽度。一般在0.2 1nm。

吸收度:较佳范围在0.1~0.5Abs。

5、常用元素波长

金242.8nm,银328.1nm,铜324.8nm,铅217.0nm,锌213.9nm,

钙422.7nm,镁385.2nm,锰279.5nm,铁248.3nm,砷189.0nm,

钾766.5nm,钠589.0nm。

原子吸收光谱

原子吸收分光光度计又称为原子吸收光谱仪,是利用光源发出被测的特征光谱辐射,被经过原子化器后的样品蒸气中的待测元素基态原子所吸收,通过测定特征辐射被吸收的大小,来求出被测元素的含量。原子吸收光谱仪主要由光源、原子化系统、光学系统、电学系统等四个基本部分组成,其工作原理:光源发出特征光谱辐射,经过原子化器室后,由分光系统得到单色光经过光电倍增管后到达检测器,终端电脑从检测器得到信号,进一步转化为数据进行处理,因为原子化器没有进样时,光通过原子化器时没有被吸收,透光率为,而当原子化器进样时,光通过原子化器时有一部分被吸收,透光率减小。根据朗伯-比尔定律,吸光度与样品浓度成正比,因此参照标准,根据吸光度可得出样品的浓度。

原子吸收光谱仪原理

原子吸收光谱仪原理是仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。

当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。基态原子吸收了能量,外层的电子产生跃迁,从低能态跃迁到激发态。

原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。

扩展资料

原子吸收光谱法的优点与不足:

(1) 检出限低,灵敏度高。火焰原子吸收法的检出限可达到 10-9级,石墨炉原子吸收法的检出限可达到 10-14~10-10g。

(2) 分析精度好。火焰原子吸收法测定中等和高含量元素的相对标准可小于 1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般为 3%~5%。

(3) 分析速度快。原子吸收光谱仪在 35 min 内能连续测定 50 个试样中的 6种元素。

(4) 应用范围广。可测定的元素达 70多种,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。

(5) 仪器比较简单,操作方便。

(6) 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

火焰原子吸收光谱仪原理

火焰原子吸收光谱法的原理是:基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。

原子吸收光谱仪的工作原理?

原子吸收光谱分析原理

原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品a的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律

A=-lgI/Io=-lgT=KCL

式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。

原子吸收光谱法原理

原子吸收光谱法原理如下:

当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生共振吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。

原子吸收光谱的产生条件:

1、辐射能:hν=Eu-E0

2、存在有效的吸光质点,即基态原子。

基于样品中的基态原子对该元素的特征谱线的吸收程度来测定待测元素的含量。

原子吸收光谱的特点:

原子吸收光谱法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。该法具有检出限低准确度高,选择性好,分析速度快等优点。

在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。即 A=KC 式中,K为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。

该法主要适用样品中微量及痕量组分分析。原子吸收光谱仪在结构上可以分为单光束型光谱仪和双光束型光谱仪。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息