1. 首页 > 科技快讯 >

原子力显微镜工作原理及应用 原子力显微镜的工作原理

原子力显微镜

原子力显微镜(Atomic Force Microscope,缩写为AFM)是1986年问世的一种以隧道效应为理论基础的显微镜,是扫描探针显微镜家族中的重要成员。扫描探针显微镜(Scanning Probe Microscope,缩写为SPM)包括扫描隧道显微镜、原子力显微镜、摩擦力显微镜、静电力显微镜、磁力显微镜等等。它们都是运用一个探针相对于样品表面进行扫描,监测两者之间的电、光、力、磁场等随针尖与样品表面间隙的变化来获取样品表面的有关信息。

原子力显微镜工作原理及应用 原子力显微镜的工作原理原子力显微镜工作原理及应用 原子力显微镜的工作原理


原子力显微镜由探针扫描系统、力检测与反馈系统、数据处理与显示系统以及振动隔离系统四部分组成。扫描系统的针尖装在微悬臂上,并使它与待测样品的表面有一定的力接触。由压电陶瓷或压电晶片三维扫描控制器驱动针尖或样品进行相对扫描。微悬臂对微弱力(如范德华力)极为敏感,并具有极高的可控空间定位精度,可达0.1nm。当微悬臂的针尖接触样品时,针尖尖端的原子与样品表面的原子会产生极微弱的排斥力,使微悬臂产生微小的形变。该形变可以作为针尖与样品之间作用力的直接度量。

近年来,原子力显微镜采用激光反射法来检测微悬臂的弯曲变形。一束激光经微悬臂背部反射到一个光电检测器(图5-5),检测器不同象限所接收的激光强度的值与微悬臂的形变量呈一定的比例关系。微悬臂约0.01 nm的形变,在检测器检测后可变成3~10nm的位移,足够产生可测量的电压。据此电压的变化,反馈系统不断地调整针尖或样品Z轴方向上的位置,可以保持针尖与样品之间的作用力恒定不变。通过测量电压对应于样品扫描位置的变化,即可获得样品表面原子尺度上的形貌图像。

图5-5 原子力显微镜的探针示意图

(据徐惠芳)

原子力显微镜对工作环境和样品制备的要求比电子显微镜的要求低得多。由于扫描面积小,相应地样品也应该很小。原子力显微镜不仅适用于导电样品,也适用于不导电的绝缘样品;样品可以在大气环境中,也可以在液体环境中进行测量。由于水环境中较低的针尖一样品力,有利于AFM成像。

原子力显微镜可应用于矿物溶蚀和风化表面的形貌观察和结构研究,表征矿物在溶解、生长、吸附,以及氧化还原反应中的形貌和结构变化,研究矿物与水界面之间的作用力、浮选过程中矿物颗粒与气泡表面之间的作用等。

上述四种显微镜的性能特点互不相同(表5-1),其中偏光显微镜是基本的,它又是运用其余三种显微镜之前进行初步研究的必要的步骤之一。

表5-1 四种显微镜的主要特征对比

原子力显微镜的原理是什么?应用是什么

原子力显微镜通过检测待测样品表面和一个微型敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。其应用领域更为广阔,除物理、化学、生物等领域外,原子力显微镜在微电子学、微机械学、新型材料、医学等领域都有着广泛的应用。如果想要挑选原子力显微镜,可以考虑Park原子力显微镜的Park NX-Wafer。它是晶圆厂具有自动缺陷检测的原子力显微镜。

原子力显微镜工作原理

AFM 是在STM 基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM 与STM 的主要区别是以1 个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。其工作原理:将一个对极微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触。

由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种作用力恒定,带有针尖的微悬臂将对应于原子间的作用力的等位面,在垂直于样品表面方向上起伏运动。利用光学检测法或隧道电流检测法,可测得对应于扫描各点的位置变化,将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。

AFM 主要是由执行光栅扫描和z 定位的压电扫描器、反馈电子线路、光学反射系统、探针、防震系统以及计算机控制系统构成。压电陶瓷管(PZT)控制样品在x、y、z 方向的移动,当样品相对针尖沿着xy 方向扫描时,由于表面的高低起伏使得针尖、样品之间的距离发生改变。当激光束照射到微悬臂的背面,再反射位置灵敏的光电检测器时,检测器不同象限收到的激光强度值,同微悬臂的形变量形成一定的比例关系。

反馈回路根据检测器信号与预置值的值,不断调整针尖、样品之间的距离,并且保持针尖、样品之间的作用力不变,就可以得到表面形貌像。这种测量模式称为恒力模式。当已知样品表面非常平滑时,可以采用恒高模式进行扫描,即针尖、样品之间距离保持恒定。这时针尖、样品之间的作用力大小直接反映了表面的形貌图像。

目前现有三种基本操作模式,可区分为接触式(contact)、非接触式(non-contact)及轻敲式(tapping)三大类。接触式及非接触式易受外界其它因素,如水分子的吸引,而造成刮伤材料表面及分辨率所引起之影像失真问题,使用上会有限制,尤其在生物及高分子软性材料上。

上海百贺仪器科技有限公司一直致力于提升实验室检测水平,作为专业化的仪器公司,我们能为您提供更全面、更优质、更专业的实验室解决方案。

百贺仪器的产品及服务涉及金属、橡胶、塑料、石油、建筑材料、汽车、电子、电工、家电、医疗、包装印刷等诸多领域,享誉八方。

原子力显微镜的原理是什么?应用是什么?

原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.\x0d\x0a详细\x0d\x0a 图1. 激光检测原子力显微镜探针工作示意图\x0d\x0a原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)——扫描探针显微镜家族中常用的一种为例,来详细说明其工作原理。 如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。 子力显微镜——原理图\x0d\x0a在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。\x0d\x0a编辑本段优缺点\x0d\x0a优点\x0d\x0a 原子力显微镜观察到的图像\x0d\x0a相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。\x0d\x0a缺点\x0d\x0a和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。原子力显微镜(Atomic Force Microscope)是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。原子力显微镜与扫描隧道显微镜相比,由于能观测非导电样品,因此具有更为广泛的适用性。当前在科学研究和工业界广泛使用的扫描力显微镜(Scanning Force Microscope),其基础就是原子力显微镜。\x0d\x0a编辑本段仪器结构\x0d\x0a在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。\x0d\x0a力检测部分\x0d\x0a在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。\x0d\x0a位置检测部分\x0d\x0a 原子力显微镜\x0d\x0a在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。\x0d\x0a反馈系统\x0d\x0a在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。\x0d\x0a总结\x0d\x0aAFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理

原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动.利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息