1. 首页 > 笙耀百科 >

航天12号飞船返回舱直播_航天十二号返回

神舟十二号航天员什么时候返回地球?

原定的是9月中旬,具体时间就不好说了,要看上边的活干完没,补给还剩多少决定具体时间了。

航天12号飞船返回舱直播_航天十二号返回航天12号飞船返回舱直播_航天十二号返回


消息,载人航天工程空间站工程阶段飞行任务总指挥部决定,9月17日神舟十二号飞船返回地球。

【神舟十二号载人飞船完成绕飞及径向交会试验】

据载人航天工程办公室消息,神舟十二号载人飞船撤离后,于北京时间2021年9月16日13时38分,与空间站组合体完成绕飞及径向交会试验,成功验证了径向交会技术,为后续载人飞行任务奠定了重要技术基础。后续,神舟十二号载人飞船将按再入返回,航天员聂海胜、刘伯明、汤洪波即将启程回到祖国怀抱。

神舟十二号返回舱着陆时为什么冒出一道火光,撞击那么强烈吗?

神舟十二号飞船在返回地球的过程中,要经过制动离轨、自由下降、再入大气层、着陆4个阶段,任何一个阶段都马虎不得,需要天、地、空三方密切配合。

在制动离轨完成之后,神舟十二号飞船会先把轨道舱抛掉。在再入大气层阶段,神舟十二号飞船会把推进舱抛掉,这时整个飞船就只剩下返回舱。当返回舱下降到一定高度时,由于接收不到地面发送的无线电信号,地面也接收不到返回舱发送的无线电信号,这时它就会进入一个被称为“黑障区”的一个无线电盲区。“黑障区”是整个过程中令人揪心的,因为在这个区域返回舱和地面指挥中心暂时失去了联系。

接下来,返回舱利用升力控制,会逐渐接近预定着陆点——东风着陆场。当到达东风着陆场上空之后,返回舱就开始准备着陆。

航天器的着陆过程,一般分为硬着陆和软着陆。简单来讲,硬着陆就是让航天器通过自由落体的方式(或者未减速到人员或设备允许值)着陆,这种方式被称为毁坏性的着陆。比如前的月球8号探测器、金星3号探测器都是采用硬着陆的方式,不过它们的探测数据在着陆前就已经送回地球接收站了。

软着陆是指通过人工干预的方式给航天器减速,使其在落地的一瞬间不至于损坏航天器本身及其里面的人员。所谓“人工干预的方式”,要么改变轨道利用大气层逐步减速,要么利用降落伞降低速度,要么通过推进器进行反向推进。

神舟十二号飞船返回舱的降落伞有四把。它先打开了伞,伞的作用是将主伞从伞包中拉出、拉直,使主伞处于良好的充气状态,防止主伞无法顺利打开。然后它又打开了减速伞和主伞,这两把伞都是用来降速的。

主伞的面积约1200平方米,全部展开后可以覆盖三个篮球场,长达70多米,叠起来却只有一个手提包大小,重量仅90多公斤。

第四把伞是备用伞。一般情况下,这把伞是派不上用场的,神舟十二号飞船返回舱的备用伞也没有打开。

在距离地面1米左右时,神舟十二号飞船的返回舱成功启动了反推发动机,再次给自身降速。所以,我们在直播画面中看到的火光实际上是由反推发动机点火形成的,冒出的滚滚黑烟也是由反推发动机造成的。

试想一下,如果火光和黑烟都是由返回舱与地面撞击形成的,那么返回舱里的航天员和精密仪器设备面临的后果将不堪设想。通常而言,载人航天返回舱在陆地上的着陆速度一般为6-7米/秒,相当于时速20多公里。

那是反推装置,借反推力量轻着陆以防猛烈撞击地面。

但是在看神舟12号返回舱直播的时候,相信大家都特别注意到了一个画面, 在13时34分19秒,当神舟12号返回舱在触地的一瞬间,突然出现一个大火球,随后地面尘土飞扬 ,看到这个画面,很多网友都心惊胆颤以为是爆炸了。

刚开始我也以为是这样的,后来我去查了各种资料才知道, 其实这并不是爆炸,这个火球其实是反推发动机点火的画面而已。

因为神舟12号返回舱在返回地面的时候,速度是比较快的,一秒速度达到3米左右,这时候为了减轻着陆的速度,让着陆更安全,所以在底部安装了反推发动机组。

反推发动机组位于返回舱的底部,由四个固体反推发动机组成,分别安装在底部四个方位,每个发动机重约11公斤,反推发动机上部装的是固体推进剂,下部是多个小孔,看起来像蜂巢一样。

这个反推发动机在返回舱距离地面大约一米的时候就必须启动,不能早也不能晚,这及时对技术要求是非常高的。

返回舱反推发动机组的技术难点是“精准”和“同步”,精准就是当返回舱在距离地面1米时必须自动触发,早了也不行,晚了也不行;同步就是响应时间不超过20毫秒,再晚就来不及了。

在返回仓发动机组点火之后就会形成反向推力,这个反向推力可以减轻着陆时的撞击,从而减轻航天员受到冲击。

不过看到这很多朋友又有一个好奇了,为什么返回舱反推发动机要在距离地面一米的时候启动,而不是提前启动呢?比如在距离地面100米的时候提前启动,这不更能减少着陆速度吗?

至于返回舱为什么要在一米距离启动,这个我没有找到详细的资料,但我个人觉得,如果返回仓提早启动反推发动机,需要耗费更多的燃料,这样增加返回舱的重量。

在发射航天飞船的时候,计算都非常准确,每多1千克都需要耗费很大的资金,特别是耗费更多的燃料。

比如在火箭发射的时候,其大部分重量都是燃料重量,燃料重量可以占到整个飞行任务的90%左右。

我们以长征七号火箭为例,火箭的总重量为500余吨,箭体外壳、电缆、仪器等重量加在一起只有50余吨,其余都是液氧煤油推进剂的重量。

对于神州12号飞船好来说,我相信起飞重量大部分也是燃料。

对返回舱来说,如果想要提前启动反推发动机,那么就需要携带更多的燃料, 这样做一方面有可能会进一步增加返回舱下降的速度,另一方面也会增加发射时的难度。

所以综合考虑各种因素之后,在确保航天员安全的情况下,在返回舱距离地面一米的时候才点火,其实是比较科学的。

神舟十二号返回舱在着陆时冒出的那一道火光,其实是着陆反推发动机瞬间点火发动,这是为了返回舱安全着陆而特别设计的。

着陆反推发动机

着陆反推发动机是神舟十二号飞船上的重要设备,是决定航天员能否安全回家的“一棒”。当返回舱离地面1米左右时,4台反推发动机必须在10毫秒内同时点火,以使返回舱时间平稳地软着陆。从而保证舱内的航天员不会受到因为着陆撞击而造成的身体伤害。

安装着陆反推发动机的作用

在返回舱距离地面10千米的时候,返回舱会先打开伞舱盖,然后依次拉开伞、减速伞、牵顶伞、主降落伞。

打开这么多的伞,是为了使返回舱的降落速度减慢,特别是主降落伞打开,就是为了使降落速度从200米/秒降速到70米/秒。

但如果以70米/秒的速度,直接撞击在地面上,舱内的航天员也是难以承受的,甚至会造成严重的伤害,这就需要在返回舱即将落地的时候,给返回舱和地面之间一个推力,让返回舱的降落速度更慢。

而安装的5台反推发动机起到的就是这个作用,它可以使返回舱的降落速度减速到3米/秒,实现返回舱的软着陆。从而保证舱内航天员的身体安全。

而今,三位航天员已经安全回到祖国的怀抱,向他们致敬。

神舟十二号飞船返回舱的着陆方式,属于典型的软着陆方式。它在着陆的过程中,综合利用了

人工干预的方式。返回舱先通过改变轨道的方式,利用大气层逐步减速;然后再利用降落伞降低速度。在距离地面1米左右时,神舟十二号飞船的返回舱成功启动了反推发动机,再次给自身降速。所以,我们在直播画面中看到的火光实际上是由反推发动机点火形成的,冒出的滚滚黑烟也是由反推发动机造成的

。起缓冲作用的,着陆时速度大约6-7米/秒。对宇航员起到保护作用。

就算有降落伞下降的速度也达到8-10米每秒,直接落地里边的人是受不了的,所以的需要反推装置来降低下降的速度。那一朵红光就是!

那是缓冲发动机启动后,吹起的沙尘

神舟12号返回舱在下降至距地面1米时,返回舱内4台对冲火箭自动点火,使返回舱下降速度由7米/秒减少至2米/秒,保护了舱内航天员的安全。

那是助推器点火后发出的光!没有助推器的反力,撞击力太强。因为:地球的引力,离地面越近吸引力越强。所以:必须给它一个缓冲力,使返回舱尽量减轻速度,平稳落地。

神舟十二号发射升空,舱内的画面是什么样的?

6月17日,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射。返回舱内的画面显示,三位航天员非常稳健,分别招手并比出“OK”手势。震撼!神舟十二号与地球同框 航天员舱内“玩笔”,神舟十二号载人飞船发射升空3位航天员奔向“空间站”。

详细解析 北京时间6月17日上午的九点二十二分,神舟十二号载人飞船已经发射成功。此次飞行任务是由聂海胜、刘伯明、汤洪波3名航天员执行,这三位航天员可谓是十三亿人口选三,他们是让我们无比自豪的航天英雄。此次航天任务的指令长是聂海胜,他已经三次前往太空,可谓是一个非常有经验的师傅级别的航天员。

纵然,聂海胜已经五十七岁,但是却是一个资深的老航天员,身体素质极其过硬。此次,载人飞船升空过程当中,这位总指挥表现的非常淡定且轻松,相信其他两位航天员受到他的影响,也不会太紧张。尤其是次升空的航天员汤洪波,看到指令长这么淡定且幽默,应该紧张会缓解很多。

泪目其实我是全程观看了神舟十二号发射升空的,在看到三位航天员比OK,以及指令长玩转笔的时候,我的眼泪不知道为何止不住的往下流,可能是太自豪了吧!我们的航天事业真的是发展的太迅速了,此次载人飞船再次升空执行任务,坚定了我们对太空探索的信心,相信我们的三位伟大的航天员会顺利的完成任务,然后返回地球!此次发射升空,舱内的画面非常的轻松,也让无数的国人放心了很多,轻松了许多!加油我们的航天员们。

神舟十二号发射升空,预示着我们的航天事业又上了一个新的台阶。

神舟十二号与地球同框,航天员舱内“玩笔”状态不错

神舟十二号与地球同框,航天员舱内“玩笔”状态不错

神舟十二号与地球同框,航天员舱内“玩笔”状态不错,这是我国载人航天工程立项实施以来的第19次飞行任务,也是空间站阶段的首次载人飞行任务。飞船入轨后,将按照预定程序,与天和核心舱进行自主快速交会对接。

神舟十二号与地球同框,航天员舱内“玩笔”状态不错1

据载人航天工程办公室消息,北京时间2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心准时点火发射,约573秒后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,飞行乘组状态良好,发射取得成功。

这是我国载人航天工程立项实施以来的第19次飞行任务,也是空间站阶段的首次载人飞行任务。飞船入轨后,将按照预定程序,与天和核心舱进行自主快速交会对接。组合体飞行期间,航天员将进驻天和核心舱,完成为期3个月的在轨驻留,开展机械臂作、出舱活动等工作,验证航天员长期在轨驻留、再生生保等一系列关键技术。

目前,天和核心舱与天舟二号的组合体运行在约390km的近圆对接轨道,状态良好,满足与神舟十二号交会对接的任务要求和航天员进驻条件。

直播画面中,神舟十二号与地球同框!舱外蔚蓝星球格外美丽。

3名宇航员聂海胜、刘伯明、汤洪波在舱内“小动作”不断,汤洪波现场“玩笔”体验失重状态,他还不时向窗外望去,比起“OK”手势。聂海胜还面带微笑向摄像头招手。

在建百年华诞到来之际,在空间站建造任务决战决胜的关键时刻,神舟队伍再次以坚定的胜利掀起了全国欢呼的浪潮,而这举世瞩目的新胜利,是由神舟人历经近三十年奋勇拼搏,砥砺前行,一步一步负重登高得来的。

1992年9月21日,我国载人航天工程“三步走”发展战略获批。从1999年到2002年,我国神舟一号、二号、三号、四号相继发射成功,通过试验四次无人飞行任务,为后续载人飞行任务奠定了坚实基础。

2003年10月15日,神舟五号载人飞船乘载一名航天员成功发射,环绕地球飞行14圈后安全返回地面,我国独立自主地完整掌握了载人航天技术;

2005年10月12日,神舟六号载人飞船搭载两名航天员上天,在轨完成了多项作,首次实现了真正有人参与的空间飞行试验,多人多天成功巡天,实现了工程步任务目标;

2008年9月25日,神舟七号载人飞船搭乘翟志刚、刘伯明、景海鹏三名航天员进入太空。航天英雄翟志刚从轨道舱进入太空,迈出了人漫步太空的步;

2011年11月1日,神舟八号飞船成功实施了首次无人交会对接,实现了我国空间技术发展的重大跨越,是在攀登世界科技高峰征程上取得的又一新的胜利;

2012年6月16日,神舟九号载人飞船再次与天宫一号对接,先后通过自动控制、手动控制两次对接成功,航天员景海鹏、刘旺,以及首飞女航天员刘洋入驻天宫一号,突破了手控交会对接技术;

2013年6月11日,神舟十号载人飞船进行了第二次载人交会对接飞行,航天员聂海胜、张晓光和王亚平在成功完成交会对接后进入了天宫一号;

2016年10月17日,神舟十一号载人飞船与天宫二号对接形成组合体,景海鹏和陈冬执行了我国迄今为止时间长的30天组合体驻留任务,考核了中期驻留支持能力,开展了一系列体现科学前沿和高新技术发展方向的空间科学与应用任务。

时至今日,神舟十二号载人飞船飞行任务成功发射,奠定了空间站建造任务载人飞船天地往返的良好开端,推动我国载人航天三步走事业向前迈出了坚实的一步。伟大梦想都始于梦想,基于创新,成于实干。载人航天事业正是由于有了这样一批艰苦奋斗,无畏奉献的队伍,才能够连捷,逐步实现技术的'突破和积淀,终实现神舟十二号载人飞船发射任务的成功!

神舟十二号与地球同框,航天员舱内“玩笔”状态不错2

北京时间6月17日9时22分,长征二号F遥十二运载火箭托举神舟十二号载人飞船拖曳着红色尾焰升空。“强双十二”联手,将聂海胜、刘伯明、汤洪波3名航天员送入太空。这是空间站在轨建造阶段首次载人飞行任务,空间站建造任务再次向前迈出一大步。

来源:央视截图

集齐天地往返“技能点”

神舟十二号载人飞船是空间站任务阶段艘载人飞船,也是迄今为止研制的标准、各方面指标要求严格的载人航天器。

按照预定,神舟十二号飞船将采用自主快速交会对接的模式,与空间站天和核心舱前向对接口对接形成组合体,3名航天员将在太空驻留约90天后返回地面。

北京时间2021年6月17日清晨,神舟十二号载人飞行任务航天员乘组出征仪式现场。郭超凯 摄

“神舟十二号是迄今为止功能完整、完全的飞船,形象点来说,它已经完全实现载人航天工程立项之初载人飞船的研制目标。”航天科技集团五院总体设计部神舟十二号载人飞船系统总体副主任设计师高旭如是说。从进入发射场那一刻,他便期待着发射那天到来。

高旭介绍,神舟十二号飞船由轨道舱、返回舱和推进舱构成,全船共有14个分系统,是航天员实现天地往返的“生命之舟”。轨道舱配备了航天员在轨生活支持设备、交会对接敏感器等关键设备,为自主快速交会对接做好充分准备;返回舱是飞船发射和返回过程中航天员所乘坐的舱段,是飞船的“大脑”;推进舱则装配推进系统、电源等设备,为飞船提供动力,并在飞行过程中进行姿态轨道的控制。

事实上,神舟载人飞船的跨越式发展并非一步达成,自1992年9月21日载人航天工程“三步走”发展战略立项以来,神舟载人飞船通过一次又一次验证,一发又一发的成功不断积累经验和技术。

神舟一号到神舟四号实现了天地往返的无人验证,神舟五号搭载航天员杨利伟实现载人天地往返,神舟六号实现多人多天天地往返活动,神舟七号实现航天员出舱活动,神舟八号到神舟十号突破了无人交会对接和有人交会对接,神舟十一号实现了航天员的中期驻留。

时至今日,神舟十二号飞船成功发射,奠定了空间站建造任务载人飞船天地往返的良好开端。至此,神舟十二号集齐了全任务全模式天地往返所需要的全部“技能点”。

高楠 摄

创下五个“首次”

在这项举世瞩目的任务中,神舟十二号载人飞船刷新了载人航天技术的新高度,完成五项“首次”,即首次实现与天和核心舱的载人自主快速对接,首次实施绕飞与空间站进行径向交会,首次具备从不同高度轨道返回东风着陆场的能力,首次实现载人飞船长期在轨停靠,首次具备天地结合多重保证的应急救援能力。

神舟十二号载人飞船将首次实施载人自主快速对接,在空间站不断调整姿态的配合下,神舟十二号载人飞船快能实现发射后6.5小时与空间站对接。此外,神舟十二号飞船飞船将首次实现载人飞船长期在轨停靠,飞船将在轨停靠3个月。

航天科技集团五院专家介绍,在神舟十二号之前,神舟载人飞船都从固定的轨道返回地球,空间站任务中空间站为了节省推进剂的消耗,轨道位置会随着不同时间节点而进行相应的调整,为满足长期停靠的要求。神舟团队为此对返回轨道重新进行适应性设计,使载人飞船返回高度从固定值调整为相对范围,并改进返回的算法,提高载人飞船返回适应性和可靠性,让神舟飞船首次具备从不同高度轨道返回东风着陆场的能力。

“载人航天,人命关天”始终是神舟团队心中的信条。为了保证天上、地上都具有保护航天员生命、在紧急条件下接回航天员的能力,神舟团队开创了天地结合的应急救援任务模式,即携带两艘飞船进场,由一艘飞船作为发射飞船的备份,作为遇到突况时航天员的生命救援之舟。神舟队伍采用“滚动待命”策略,在前一发载人飞船发射时,后一发载人飞船在发射场待命,并具备8.5天应急发射能力以实现太空救援的能力,全力保障航天员的生命安全。

神舟十二号返航惊险时刻:黑障屏蔽飞船信号,舱外温度高达2000度

神舟飞船的前段是轨道舱,中段是返回舱,后面是推进舱。首先,轨道舱和返回舱进行分离,神舟十二号飞船降到返回轨道。随后发动机开机,飞船将从393公里高度逐步下降,在进入大气层之前,飞船要完成推进舱分离。

神舟十二号返回舱的外形像一个上窄下宽的“大钟”,通过发动机的姿态调整,以大底朝前的姿态升力式返回的方式返回地球, 返回舱要建立正确的再入姿态角(速度方向与当地水平面的夹角)。这个角度必须地控制在一定范围内,如果角度太小,飞船将从大气层边缘擦过而不能返回;如果角度太大,飞船返回速度过快,就会像流星-样在大气层中烧毁。

飞船返回舱进入稠密大气层后,是返回过程中环境为恶劣的阶段。空气密度越来越大,返回舱与空气剧烈摩擦,使其底部温度高达数千摄氏度,返回舱周围被火焰所包围,因此,对返回舱要采取特殊的防热措施。

在距地面10公里左右的高度,返回舱将打开降落伞,并抛掉防热大底,速 度将下降至每秒3.5 米左右。在距地面1米左右时启动反推发动机,终使返回舱实现安全着陆。

在进入大气层后,可以说是惊险的时刻,在进入大气层时, 由于返回舱对大气的高速摩擦和对周围气体的压缩,使速度急剧下降,同时巨大的动能转换成热能。这些热能除辐射掉一部分之外,其中的一部分将使返回舱表面温度上升到2000多度,返回舱外壁会被熊熊烈火包围,使整个飞船像火球一样划过天空。

这也是飞船返回舱返回技术难点之一,就是飞船的降温,必须给飞船穿上一件“隔热 衣”。不然整个返回舱将会像陨石一样被烧为灰烬。

飞船返回舱的降温主要通过三种方法:一是吸热式防热,在返回舱的某些部位,采用导热性能好、熔点高和热容量大的金属吸热材料来吸收大量的气动热量;二是辐射式防热,用具有辐射性能的钛合金及陶瓷等复合材料,将热量辐射散发出去;三是烧蚀防热,利用高分子材料在高温加热时表面部分材料融化、蒸发、升华或分解汽化带走大量热量的方法散热。

神州十二号返回舱则采用的是烧蚀防热的方式,在返回舱外部特别是温度的底部包覆了一层称为“烧蚀材料”的厚厚防热层。这种材料引火烧身,能够通过燃烧自己,耗散大量的热能,从而保护飞船。飞船返回舱着陆后看起来像个烧黑的大铁锅,这就是烧蚀防热形成的结果。因此烧蚀材料,要求汽化热大,热容量大,绝热性好,向外界辐射热量的本领强。科学家通过对数十种烧蚀材料的反复筛选和试验,终为神舟飞船选择了一种先进的低密度烧蚀材料。这种材料不但能耐受几千度的高温,而且密度小于1克/厘米3,质量非常轻。

除此之外,在降落过程中,由于气动加热,贴近返回舱表面的气体分子被分解和电离,形成一个等离子层。由于等离子体具有吸收和反射电磁波的能力,因此包裹返回舱的等离子体层,实际是一个等离子电磁波屏蔽层。所以当返回舱进入被等离子体包裹状态时,舱外的无线电信号进不到舱内,舱内的无线电信号也传不到舱外,一时间,舱内外失去了联系,这就是黑障现象。

在这个过程中,地面无法通过任何遥控方式对飞船进行控制,依靠飞行器对状态进行全自动处理。

黑障的范围取决于再入体的外形、材料、再入速度,以及发射信号的频率和功率等。黑障给载人飞船再入返回时的实时通信和再入测量造成困难,目前尚无很好的解决办法。

而一道难关就是降落了,尽管舱体距离地面10公里左右时,飞船的速度已经降到每秒330米以下,这时返回舱上的静压高度控制器通过测量大气压力自动判定所处高度并开伞减速,将返回舱速度逐步降到每秒7米左右。返回舱仍具有很高的速度和较大的动能,这种速度下产生的“硬碰硬”撞击,极有可能会对航天员的脊柱造成损伤。

为此,返回舱会在距离地面1米时悬空急停,安装在返回舱底部的4台着陆反推发动机自动点火,并以极强的缓冲力助其实施“软着陆”。虽然反推发动机个头不大,但 点火时能产生3吨向上的推力。返回舱着陆时,4只生12吨向上的推力,抵消了大部分返回舱的动能,从而达到减速目的。

同时通过返回舱底部的由吸能外壳、减振材料和座椅缓冲机构组成的减振系统进一步吸收能量,从而保证航天员安全着陆。

为了保证航天员和返回舱内设备的安全,4台着陆反推发动机必须在10毫秒内同时点火。除此之外, 作为神舟飞船上工作的发动机,着陆反推发动机在点火前,还要经历发射震动、太空高低温环境、长时间真空条件等多种考验,为了保证发动机的自身素质,需要研制团队对其进行反复的试验和模拟验证。

可以说,神舟十二号的返回之路充满惊险,它能够表现如何完美,离不开幕后团队的保驾护航,,也让我们向所有航天工作者致敬。

神舟十二号飞船是如何返回地面的?

盼星星盼月亮,终于把太空三人组盼回来了,想必很多人都会好奇这次神舟十二号飞船是怎么返回地面的,那么下面是小编对神舟十二号返回地面过程的整理。

9月16日上午8时56分,神舟十二号载人飞船与天和核心舱成功分离。

与天和核心舱分离后,神舟十二号载人飞船与空间站组合体进行了绕飞及径向交会试验,成功验证了径向交会技术,为后续载人飞行任务奠定了重要技术基础。这次交会试验,目的就是为了在神舟十二号返回地球前,验证“径向交会”的关键技术,因为未来将要发射的神舟十三号飞船就将与核心舱径向对接口实现交会对接。这个过程耗时四个半小时。

随后,神舟十二号载人飞船按再入返回,航天员聂海胜、刘伯明、汤洪波启程回到祖国怀抱。神舟十二号大约还需要围绕地球飞十几圈,以降低神舟十二号载人飞船的轨道。所以,神舟十二号载人飞船返回地球约需要20~30个小时。

神舟十二号载人飞船在与天和核心舱分离后返回地面,需要经历四个阶段:制动飞行阶段、自由滑行阶段、再入大气层阶段、着陆阶段。

神舟十二号载人飞船自动飞行阶段。

当飞船在运行一圈时,地面测控指挥中心向飞船发送返回指令,神舟十二号载人飞船调整飞行姿态,按程序发动机点火制动,进行离轨作任务,进入飞船返回轨道。

神舟十二号载人飞船自由滑行阶段。

这时飞船是保持无动力的飞行状态,当飞船飞行高度降至约140公里时,飞船推进舱与返回舱分离。推进舱外大气层时烧毁,飞船返回舱继续飞行下降。

神舟十二号载人飞船返回舱再入大气层阶段。

此时,返回舱高度约100公里,飞船表面和周围空气摩擦产生高温,屏蔽电磁波,使飞船在约四分钟的时间与地面失去联系,即通常所说的“黑障”现象。返回舱距离地球约40公里时,“黑障”消失,返回舱恢复与地面通信联系,继续下降高度。

神舟十二号载人飞船返回舱着陆阶段。

当返回舱降至约10公里时,即进入着陆阶段。着陆系统开始工作,连续完成伞、减速伞、主伞的动作,飞船开始伞降。在离地面约1米时,4台反推火箭发动机点火,使飞船返回舱以1米-2米/秒的速度实现软着陆。 此次神舟十二号载人飞船首次将在东风着陆场降落。

而且此次还有航天科工系列高质量航天产品护航神舟十二号航天员乘组平安“回家”。

热控“管家”,保障再入温度调节

返回舱再入大气层时要经历环境温度的剧烈变化,需要专用的热控系统来为内部设备控温。航天科工河南航天695厂为飞船热控分系统提供的温控阀、自锁阀、自控阀、过滤器、加排服务阀、快速断接器等多种类产品,负责控制热控分系统介质流量、通断,维持系统介质清洁,保障整个系统可以按照要求准确调节温度,确保在剧烈温下舱内的各部件、仪器设备处于合适的温度,堪称是为热控系统做保障的关键“管家”。

雷达“接力”,助力铺就回家坦途

此次任务中,航天科工二院23所无源定位雷达系统承担了返回跟踪测量任务,一系列返回数据的获得,对顺利返回起到至关重要的作用。该雷达承担返回器跟踪测量任务的“一棒”。它在航天器降落伞开伞之后发挥作用,不受天气影响,可将着陆时的探测精度从“公里级”提升到“百米级”,大大提升搜救效率。

智慧“刹车”,带来舒适着陆体验

在返回的阶段,航天科工三院35所研制的“刹车指令员”——γ高度计,位于神舟十二号返回舱底部,γ射线的探测体制赋予它穿透地表植被的能力,可测量返回舱底部距离地表的高度。当返回舱距离地面一定高度时,它给出预指令信号,舱内指示灯亮起,航天员将做好着陆准备;之后,根据实时速度在合适高度发出点火指令,控制反推发动机点火“刹车”,限度发挥反推发动机的缓冲性能,让航天员安全着陆。

有了它们还有宇航员的坚持以及背后的科研人员的帮助,神舟十二号精准落地,欢迎回家!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息