1. 首页 > 智能数码 >

初中数学必考题目加答案 初中数学考试必考题

初中数学数学脑筋急转弯题目及答案

1.假设1=5 2=6 3=8 4=7 5=?

初中数学必考题目加答案 初中数学考试必考题初中数学必考题目加答案 初中数学考试必考题


答案:1

2.一个裁缝,有一块16米长的呢料,她每天从上面剪下来2米,问多少天后,她剪下后一段呢料

答案:(8-1)=7(天)

3.a b c + c d c = a b c d

abcd个等于几?

答案:a=1 c=9 d=8 b=0

109+989=1098

4. 阿里说在某条件下4-1=5,并说可以用示意方式证明该方式的正确小英不服,等阿里拿出证明之后,她无话说了.阿里怎样证明算试的呢?猜猜看.

答案:一张四个角的桌子,用刀砍去一个角后,还有5个角

5.每瓶汽水卖 1.00 CNY, 每2个空瓶即可以直接兑换1瓶汽水,问给你 20.00 CNY 买汽水喝,多能喝到几瓶?

答案:1.买20瓶,喝20瓶,空10个瓶(20)

2.20个空瓶换10瓶,喝10瓶,空10个瓶(10)

3.10个空瓶换5瓶,喝5瓶,空5个瓶(5)

4.5个空瓶换2瓶,喝2瓶,空3个瓶(2)

5.3个空瓶换1瓶,喝1瓶,空2个瓶(1)

6.2个空瓶换1瓶,和1瓶,空1个瓶(1)

7.借1个空瓶,共2个空瓶,换1瓶喝掉,空瓶换人家(1)

合计:20+10+5+2+1+1+1=40瓶.

6.用火柴棍拼的1-701=2,动一根火柴棍使等式成立。

答案:1加1 = 2......减号放到 7 上即可。

7.在什么情况下,5大于0,0大于2 ,2大于5?

答案:5是布,0是石头,2是剪子。

8.一名军官要求24名士兵站成6排,每排都是5人,士兵们全犯傻了。后一名士兵终于想出了一个好办法。他是怎样安排的?

答案:排成六边形就行了。

9.一打鸡蛋是十个,鸡蛋一打是几个?

答案:0个,因为打碎了

10.一个人花8块钱买了一只鸡,9块钱卖掉了,然后他觉得不划算,花10块钱又买回来了,11块钱买给另外一个,问他赚了多少?

这是一面试题:

有三种算法:

1.初只有8块钱,后你有11块了,所以是赚3块;

2.第一次买卖,主人公损失8块,获得一只鸡,第二次买卖;主人公获得9块,损失一只鸡;第三次买卖,主人公损失10块,获得一只鸡;第四买卖,主人公获得11块,损失一只鸡所以 整个产生的GDP(国内生产总值)是8+9+10+11=38元+4只鸡

3.整个事件有3次交易,我门来看看具体是哪3次?

第一次交易:8元买进,9元卖出,利润1元;

第二次交易:9元卖出,10元买进,利润-1元;

第三次交易:10元买进,11元卖出利润1元;

整个过程:1-1+1=1元

所以分析得知:这个人是个傻子,因为后两次交易等于白干了。

初中数学试题及答案

初中数学试题及答案

选择题

(1)有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )。

A、21 B、25 C、29 D、58

答案:C

(2)某开发商按照分期付款的形式售房。张明家购买了一套,现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款5000元,与上一年剩余欠款的利息之和。已知剩余欠款的年利率为0.4%,第( )年张明家需要交房款5200元。

A、7 B、8 C、9 D、10

答案D

(3)若干名战士排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有战士( )人。

A、904 B、136 C、240 D、360

解:A、B

此题反推一下即可。所以选择A、B

(4)一个三位数,它的反序数也是一个三位数,用这个三位数减去它的反序数得到的不为0,而且是4的倍数。那么,这样的三位数有( )个。

A、2 B、30 C、60 D、50

答案:D

这个三位数与它的反序数除以四的余数应该相等,

不妨设这个三位数是ABC,则它的反序数为CBA。于是有ABC-CBA=4的倍数,即100A+10B+C-(100C+10B+C)=4的倍数,整理得99(A-C)=4的倍数,即可知A-C是4的倍数即可,但是不能使这两个三位数的为0,所以分别有5,1;6,2;7,3;8,4;9,5四组。每组中分别有10个,那么共有50个。

(5)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子都正好8分钟燃尽。现在用这些绳子计量时间,比如:在一根绳子的两端同时点火,绳子4分钟燃尽;在一根绳子的一端点火,燃尽的同时点第二根绳子的一端,两根绳子燃尽可计时16分钟。

规则:①计量一个时间多只能使用3条绳子。

②只能在绳子的端部点火。

③可以同时在几个端部点火。

④点着的火中途不灭。

⑤不许剪断绳子,或将绳子折起。

根据上面的5条规则下列时间能够计量的有( )。

A、6分钟 B、7分钟 C、9分钟

D、10分钟 E、11分钟、 F、12分钟

答案:A,B,C,D,F。只有11分钟计量不出来。

通过上面对数学选择题试题的知识练习学习,希望同学们对上面的题目知识都能很好的掌握,相信同学们会从中学习的更好的哦。

因式分解同步练习(解答题)

关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。

因式分解同步练习(解答题)

解答题

9.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

因式分解同步练习(填空题)

填空题

5.已知9x2-6xy+k是完全平方式,则k的值是________.

6.9a2+(________)+25b2=(3a-5b)2

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,则a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(选择题)

同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。

因式分解同步练习(选择题)

选择题

1.已知y2+my+16是完全平方式,则m的值是( )

A.8 B.4 C.±8 D.±4

2.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

3.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

4.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

1.C 2.D 3.B 4.D

以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。

整式的乘除与因式分解单元测试卷(填空题)

下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。

填空题(每小题4分,共28分)

7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________

8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .

9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)

10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .

11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.

(a+b)1=a+b;

(a+b)2=a2+2ab+b2;

(a+b)3=a3+3a2b+3ab2+b3;

(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.

12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)

第n年12345…

老芽率aa2a3a5a…

新芽率0aa2a3a…

总芽率a2a3a5a8a…

照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).

13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .

答案:

7.

考点:零指数幂;有理数的乘方。1923992

专题:计算题。

分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;

(2)根据乘方运算法则和有理数运算顺序计算即可.

解答:解:(1)根据零指数的意义可知x﹣4≠0,

即x≠4;

(2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.

点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.

8.

考点:因式分解-分组分解法。1923992

分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.

解答:解:a2﹣1+b2﹣2ab

=(a2+b2﹣2ab)﹣1

=(a﹣b)2﹣1

=(a﹣b+1)(a﹣b﹣1).

故答案为:(a﹣b+1)(a﹣b﹣1).

点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.

9.

考点:列代数式。1923992

分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.

解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.

点评:解决问题的关键是读懂题意,找到所求的量的等量关系.

10.

考点:平方公式。1923992

分析:将2a+2b看做整体,用平方公式解答,求出2a+2b的值,进一步求出(a+b)的值.

解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,

(2a+2b)2﹣12=63,

(2a+2b)2=64,

2a+2b=±8,

两边同时除以2得,a+b=±4.

点评:本题考查了平方公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.

11

考点:完全平方公式。1923992

专题:规律型。

分析:观察本题的`规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.

解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.

点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.

12

考点:规律型:数字的变化类。1923992

专题:图表型 。

分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为

21/34≈0.618.

解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,

所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,

则比值为21/34≈0.618.

点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.

13.

考点:整式的混合运算。1923992

分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.

解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,

a=4﹣1,

解得a=3.

故本题答案为:3.

点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.

以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。

整式的乘除与因式分解单元测试卷(选择题)

下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。

整式的乘除与因式分解单元测试卷

选择题(每小题4分,共24分)

1.(4分)下列计算正确的是( )

A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6

2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( )

A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3

3.(4分)下面是某同学在一次检测中的计算摘录:

①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2

其中正确的个数有( )

A.1个B.2个C.3个D.4个

4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( )

A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1

5.(4分)下列分解因式正确的是( )

A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)

6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )

A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab

答案:

1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992

分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.

解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;

B、应为a4÷a=a3,故本选项错误;

C、应为a3a2=a5,故本选项错误;

D、(﹣a2)3=﹣a6,正确.

故选D.

点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.

2.

考点:多项式乘多项式。1923992

分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.

解答:解:(x﹣a)(x2+ax+a2),

=x3+ax2+a2x﹣ax2﹣a2x﹣a3,

=x3﹣a3.

故选B.

点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.

3.

考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992

分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.

解答:解:①3x3(﹣2x2)=﹣6x5,正确;

②4a3b÷(﹣2a2b)=﹣2a,正确;

③应为(a3)2=a6,故本选项错误;

④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.

所以①②两项正确.

故选B.

点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.

4考点:完全平方公式。1923992

专题:计算题。

分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.

解答:解:x2是一个正整数的平方,它后面一个整数是x+1,

它后面一个整数的平方是:(x+1)2=x2+2x+1.

故选C.

点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.

5,

考点:因式分解-十字相乘法等;因式分解的意义。1923992

分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不,故本选项错误;

B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

C、是整式的乘法,不是分解因式,故本选项错误;

D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

故选B.

点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要,直到不能再分解为止.

6考点:因式分解-十字相乘法等;因式分解的意义。1923992

分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不,故本选项错误;

B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;

C、是整式的乘法,不是分解因式,故本选项错误;

D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.

故选B.

点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要,直到不能再分解为止.

6.

考点:列代数式。1923992

专题:应用题。

分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.

解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.

可绿化部分的面积为ab﹣bc﹣ac+c2.

故选C.

点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.

用字母表示数时,要注意写法:

①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;

②在代数式中出现除法运算时,一般按照分数的写法来写;

③数字通常写在字母的前面;

④带分数的要写成假分数的形式.

以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工

初中数学试题总汇

解答题

1.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

1.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

填空题

2.已知9x2-6xy+k是完全平方式,则k的值是________.

3.9a2+(________)+25b2=(3a-5b)2

4.-4x2+4xy+(_______)=-(_______).

5.已知a2+14a+49=25,则a的值是_________.

答案:

2.y23.-30ab 4.-y2;2x-y 5.-2或-12

选择题

6.已知y2+my+16是完全平方式,则m的值是( )

A.8 B.4 C.±8 D.±4

7.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

8.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

9.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

6.C 7.D8.B9.D

初中数学试题精选之圆

因式分解同步练习(解答题)

解答题

9.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

答案:

9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)

同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。

因式分解同步练习(填空题)

填空题

5.已知9x2-6xy+k是完全平方式,则k的值是________.

6.9a2+(________)+25b2=(3a-5b)2

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,则a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(选择题)

同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。

因式分解同步练习(选择题)

选择题

1.已知y2+my+16是完全平方式,则m的值是( )

A.8 B.4 C.±8 D.±4

2.下列多项式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

3.下列各式属于正确分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

4.把x4-2x2y2+y4分解因式,结果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

1.C 2.D 3.B 4.D

以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。

100道初中数学计算题及答案

①5√8-2√32+√50

=53√2-24√2+5√2

=√2(15-8+5)

=12√2

②√6-√3/2-√2/3

=√6-√6/2-√6/3

=√6/6

③(√45+√27)-(√4/3+√125)

=(3√5+3√3)-(2√3/3+5√5)

=-2√5+7√5/3

④(√4a-√50b)-2(√b/2+√9a)

=(2√a-5√2b)-2(√2b/2+3√a)

=-4√a-6√2b

⑤√4x(√3x/2-√x/6)

=2√x(√6x/2-√6x/6)

=2√x(√6x/3)

=2/3|x|√6

⑥(x√y-y√x)÷√xy

=x√y÷√xy-y√x÷√xy

=√x-√y

⑦(3√7+2√3)(2√3-3√7)

=(2√3)^2-(3√7)^2

=12-63

=-51

⑧(√32-3√3)(4√2+√27)

=(4√2-3√3)(4√2+3√3)

=(4√2)^2-(3√3)^2

=32-27

=5

⑨(3√6-√4)?

=(3√6)^2-23√6√4+(√4)^2

=54-12√6+4

=58-12√6

⑩(1+√2-√3)(1-√2+√3)

=[1+(√2-√3)][1-(√2-√3)]

=1-(√2-√3)^2

=1-(2+3+2√6)

=-4-2√6

(1)5√12×√18

=52√33√2

=30√6;

(2)-6√45×(-4√48)

=63√544√3

=288√15;

(3)√(12a)×√(3a) /4

=√(36a^2)/4

=6a/4

=3a/2.

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

有理数练习

练习一(B级)

(一)计算题:

(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7)

望采纳~~

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息