1. 首页 > 智能数码 >

二重积分性质_二重积分的形式

定积分的几何意义是曲边梯形的有向面积,物理意义是变速直线运动的路程或变力所做的功。

二重积分性质_二重积分的形式二重积分性质_二重积分的形式


二重积分的几何意义是曲顶柱体的有向体积,物理意义是加在平面面积上压力(压强可变)。

积分的线性性质:

性质1(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差)

性质2(积分满足数乘)被积函数的常系数因子可以提到积分号外比较性:

性质3 如果在区域D上有f(x,y)≦g(x,y)估值性:性质4设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积性质5如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。

二重积分中值定理:设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η)。

求解方法

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

其积分区域D是由所围成的区域。

其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。

故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。

设Ω为空间有界闭区域,f(x,y,z)在Ω上连续。

(1)如果Ω关于xOy(或xOz或yOz)对称,且f(x,y,z)关于z(或y或x)为奇函数

(2)如果Ω关于xOy(或xOz或yOz)对称,Ω1为Ω在相应的坐标面某一侧部分,且f(x,y,z)关于z(或y或x)为偶函数

(3)如果Ω与Ω’关于平面y=x对称

二重积分有什么性质吗?

如果积分区域D也关于直线y=-x对称,就如如下性质:把被积函数f(x,y)换成f(-y,-x),则在D上的二重积分值不变。

二重积分的本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。

扩展资料:

二重积分的性质:

1、积分可加性:函数和(差)的二重积分等于各函数二重积分的和(差),即

2、积分满足数乘:被积函数的常系数因子可以提到积分号外,即

3、比较性:如果在区域D上有f(x,y)≦g(x,y),则

4、当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。

二重积分性质?

对称区域对应点的函数值绝对值相等符号相反,积分为0

本题对被积函数-2y而言,区域关于x轴对称,对称点(x,y)与(x,-y),函数值就是绝对值相等符号相反,所以积分是0

2y是关于y的奇函数,

区域x^2+y^2≤1关于直线y=0(x轴)对称,

所以2y的积分为0.

可以吗?

高数二重积分

这是我的理解:

二重积分和二次积分的区别

二重积分是有关面积的积分,二次积分是两次单变量积分。

①当f(x,y)在有界闭区域内连续,那么二重积分和二次积分相等。对开区域或无界区域这关系不衡成立。

②可二次积分不一定能二重积分。如对[0,1]*[0,1]区域,对任意x∈[0,1]可定义一个对y连续的函数g(x,y)(y∈[0,1])∫g(x,y)dy=1.那么∫dx∫g(x,y)dy有意义,一般地∫∫g(x,y)dσ没意义。

③可以二重积分不一定能二次积分。区域S={(x,y)|x>=1,|y|<=1/x^3}。恒等函数f(x,y)=1,(x,y)∈S。f在S上可以二重积分却不能二次积分(先对x再对y求积分,在y=0那条线上积分无穷)。

积分对调

上面③的例子中积分对调了一个可以积分,一个不可以积分(先对y积分x固定时积分得到2/x^3.2/x^3对x(x属于[1,无穷)可积分。

可对调x,y的情况是

连续且绝对可积,对x或y求分步积分存在。特殊情况函数在有界闭区域连续可对调x,y,这时由于连续性函数在闭区域存在极值。

积分变换一定要求变换后的积分区间与原来相同,且不能有重复积分的情况

化为极坐标, x^2+y^2 = 2y, 即 r = 2sint ; x^2+y^2 = 4y, 即 r = 4sint ;

x = √3y 即 t = π/6 ; y = √3x 即 t = π/3 .

I = ∫∫(x^2+y^2)dxdy = ∫<π/6, π/3>dt∫<2sint, 4sint> r^2 rdr

= (1/4)∫<π/6, π/3>dt[r^4]<2sint, 4sint> = 60∫<π/6, π/3>(sint)^4dt

= 15∫<π/6, π/3>(1-cos2t)^2dt = 15∫<π/6, π/3>[1-2cos2t+(cos2t)^2]dt

= 15∫<π/6, π/3>[3/2-2cos2t+(1/2)cos4t]dt

= 15[3t/2 - sin2t + (1/8)sin4t]<π/6, π/3>

= 15(π/2 - √3/2 - √3/16 - π/4 + √3/2 - √3/16)

= 15(π/4 -√3/8)

二重积分的性质

积分区域关于直线 y=x 对称的二重积分

(1) {D区域} ∫∫f(x,y)dxdy = {D1区域}∫∫f(x,y)dxdy, 当f(y,x) = f(x,y)

= 0 ,当f(y,x) = -f(x,y)

其中D1={(x,y)|(x,y)∈D,y≥x) 也可换为 D2={(x,y)|(x,y)∈D,y≤x};

(2) {D区域} ∫∫f(x,y)dσ = {D区域}∫∫f(y,x)dσ

这是二重积分的特殊性质,非常有用。该性质表明,当积分区域D关于直线y=x对称时,二重积分中被积函数的两个变量可以互换位置,常称有此性质的D具有关于积分变量的对称性。

记号

通用的区间记号中,圆括号表示“排除”,方括号表示“包括”。例如,区间(10, 20)表示所有在10和20之间的实数,但不包括10或20。

另一方面,[10, 20]表示所有在10和20之间的实数,以及10和20。而当我们任意指一个区间时,一般以大写字母 I 记之。

二重积分的性质有哪些?

1、对称性计算二重积分:当被积函数 integrand 是奇函数时,在对称于原点的区域内积分为0。被积函数或被积函数的一部分是否关於某个坐标对称,积分区间是否对称,如果可以就可以用对称性,只用积分一半再乘以2。

2、奇偶性计算二重积分:当被积函数是偶函数时,在对称于原点的区域内积分为单侧积分的两倍。被积函数或被积函数的一部分是否具有奇偶性,积分区间是否对称,如果奇函数则积分为0为偶函数则用对称性。

性质须知

1、被积函数提供不定积分积出来的函数,虽然看可以讨论原函数的奇偶性,但是讨论积分函数去奇偶性时,考虑的仅仅是被积函数。

2、有界性:设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

3、单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1

以上内容参考:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息