1. 首页 > 智能数码 >

ansys添加发热功率 ansys怎么加温度

ANSYS热载荷取值大小对仿真结果的影响

你的载荷貌似加的有问题吧,貌似是体生热率,功率密度应该是heat flux。

ansys添加发热功率 ansys怎么加温度ansys添加发热功率 ansys怎么加温度


另外载荷值过小,造成温太小,所以第一张图显示不出来吧,可以用/CVAL调节。下面的apdl可以参考参考

fini

我想通过ansys建立一个温电源(Thermoelectric Generator,TEG)模型。

这个问题可以使用稳态的单纯的热分析完全可以解决,你就找一个热的稳态例子,相应地改些东西就可以:

/prep7

esize,0.5

et,1,55 ! 2-D Thermal Solid

rect,0,2,0,1

amesh,1

MP,KXX,,1.0 ! 导热系数

MP,DENS,,10.0 ! 质量密度

MP,C,,100.0 ! 比热

lsel,s,loc,x,0

dl,all,,temp,100 ! 施加温度

alls

lsel,u,loc,x,0 ! 除过刚才选择的那个线

nsll,s,1 ! 选择线上的所有的结点包括关键点Select all nodes (interior to line and at keypoints) associated with the selected lines

sf,all,conv,%cnvtab%,20 ! 结点施加面载荷(对流CONV -convection);使用表格施加载荷方式

alls

/psf,conv,hcoef,2 ! 展列表面载荷的符号show convection bc.film coefficient膜层散热系数

/pnum,tabn,on ! 显示列表的名字;show table names the table name appears

nplot

fini

/solu

anty,static

kbc,1

nsubst,1 ! 指定载荷步的子步数

time,60 ! 载荷步的结束时间

tunif,50 ! 为结点指定一个共同的温度

outres,all,all ! 所有的信息数据写入数据库

solve

finish

/post1

/PLOPTS,INFO,ON ! Legend column on 不在屏幕上显示ANSYS标记 只显示日期

/PLOPTS,LEG1,OFF ! 圆柱图例的一部分

set,last

sflist,all ! 表面载荷的数据都列出来;Numerical values of convection bc's

/pnum,tabn,off ! turn off table name

/psf,conv,hcoef,2 ! show convection bc.

/pnum,sval,1 ! show numerical values of table bc's 应力值

eplot ! convection at t=60 sec.

plns,temp ! Displays element table items as contoured areas along elements.

fini

求ansys移动热源如何建立,求相关实例!!!

给你一个三维平板焊接的实例,用的是移动高斯热源。主要是这一段:

! Begin of equation: Qmexp(-3({X}^2+({Y}-V{TIME})^2)/R^2)

/PREP7

!定义焊接参数

L=1E-1 !焊件的长度

W=1E-1 !焊件的宽度

H=6E-3 !焊件的高度

U=20 !焊接电压

I=160 !焊接电流

V=0.01 !焊接速度

YITA=0.7 !焊接热效率

R=0.007 !电弧有效加热半径

Q=UIYITA !电弧热功率

Qm=3/3.1415/R2Q !加热斑点中心热流密度

!

ET,1,PLANE55

ET,2,SOLID70

MPTEMP,,,,,,,,

MPTEMP,1,20

MPTEMP,2,200

MPTEMP,3,500

MPTEMP,4,750

MPTEMP,5,1000

MPTEMP,6,1500

MPTEMP,7,1700

MPTEMP,8,2500

MPDATA,KXX,1,,50

MPDATA,KXX,1,,47

MPDATA,KXX,1,,40

MPDATA,KXX,1,,27

MPDATA,KXX,1,,30

MPDATA,KXX,1,,35

MPDATA,KXX,1,,40

MPDATA,KXX,1,,55

MPDATA,DENS,1,,7820

MPDATA,DENS,1,,7700

MPDATA,DENS,1,,7610

MPDATA,DENS,1,,7550

MPDATA,DENS,1,,7490

MPDATA,DENS,1,,7350

MPDATA,DENS,1,,7300

MPDATA,DENS,1,,7090

MPDATA,C,1,,460

MPDATA,C,1,,480

MPDATA,C,1,,530

MPDATA,C,1,,675

MPDATA,C,1,,670

MPDATA,C,1,,660

MPDATA,C,1,,780

MPDATA,C,1,,820

MPDATA,EX,1,,2.05E11

MPDATA,EX,1,,1.87E11

MPDATA,EX,1,,1.5E11

MPDATA,EX,1,,0.7E11

MPDATA,EX,1,,0.2E11

MPDATA,EX,1,,0.19E2

MPDATA,EX,1,,0.18E2

MPDATA,EX,1,,0.12e2

MPDATA,PRXY,1,,0.28

MPDATA,PRXY,1,,0.29

MPDATA,PRXY,1,,0.31

MPDATA,PRXY,1,,0.35

MPDATA,PRXY,1,,0.4

MPDATA,PRXY,1,,0.45

MPDATA,PRXY,1,,0.48

MPDATA,PRXY,1,,0.5

UIMP,1,REFT,,,20

MPDATA,ALPX,1,,1.1e-5

MPDATA,ALPX,1,,1.22e-5

MPDATA,ALPX,1,,1.39e-5

MPDATA,ALPX,1,,1.48e-5

MPDATA,ALPX,1,,1.34e-5

MPDATA,ALPX,1,,1.33e-5

MPDATA,ALPX,1,,1.32e-5

MPDATA,ALPX,1,,1.31e-5

TB,BISO,1,6,2,

TBTEMP,20

TBDATA,,220e6,0,,,,

TBTEMP,250

TBDATA,,175e6,0,,,,

TBTEMP,500

TBDATA,,80e6,0,,,,

TBTEMP,750

TBDATA,,40E6,0,,,,

TBTEMP,1000

TBDATA,,10E6,0,,,,

TBTEMP,1500

TBDATA,,1E-5,0,,,,

K,1,0,0,0

K,2,0,L,0

K,3,-W/20.15,L,0

K,4,-W/20.3,L,0

K,5,-W/20.5,L,0

K,6,-W/2,L,0

K,7,-W/2,0,0

K,8,-W/20.5,0,0

K,9,-W/20.3,0,0

K,10,-W/20.15,0,0

K,11,0,0,H

A,1,2,3,10

A,10,3,4,9

A,9,4,5,8

A,8,5,6,7

ESIZE,0.0012

AMESH,1

ESIZE,0.0025

AMESH,2

ESIZE,0.005

AMESH,3

ESIZE,0.0065

AMESH,4

TYPE, 2

EXTOPT,ESIZE,2,0,

EXTOPT,ACLEAR,1

!

EXTOPT,ATTR,1,0,0

REAL,_Z4

ESYS,0

!

VOFFST,1,H, ,

VOFFST,2,H, ,

VOFFST,3,H, ,

VOFFST,4,H, ,

EPLOT

NUMMRG,ALL, , , ,LOW

/SOL

!

ANTYPE,4

!

TRNOPT,FULL

LUMPM,0

DEL,_FNCNAME

DEL,_FNCMTID

DEL,_FNC_C1

DEL,_FNC_C2

DEL,_FNC_C3

DEL,_FNCCSYS

SET,_FNCNAME,'GAOSI'

DIM,_FNC_C1,,1

DIM,_FNC_C2,,1

DIM,_FNC_C3,,1

SET,_FNC_C1(1),QM

SET,_FNC_C2(1),V

SET,_FNC_C3(1),R

SET,_FNCCSYS,0

! /INPUT,HANJIE.func,,,1

DIM,%_FNCNAME%,TABLE,6,19,1,,,,%_FNCCSYS%

!! Begin of equation: Qmexp(-3({X}^2+({Y}-V{TIME})^2)/R^2)

SET,%_FNCNAME%(0,0,1), 0.0, -999

SET,%_FNCNAME%(2,0,1), 0.0

SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%

SET,%_FNCNAME%(4,0,1), %_FNC_C2(1)%

SET,%_FNCNAME%(5,0,1), %_FNC_C3(1)%

SET,%_FNCNAME%(6,0,1), 0.0

SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 0, 0, 0, 0

SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, 0, 0, -1

SET,%_FNCNAME%(0,3,1), 0, -3, 0, 1, -1, 2, -2

SET,%_FNCNAME%(0,4,1), 0.0, -1, 0, 3, 0, 0, -3

SET,%_FNCNAME%(0,5,1), 0.0, -2, 0, 1, -3, 3, -1

SET,%_FNCNAME%(0,6,1), 0.0, -1, 0, 2, 0, 0, 2

SET,%_FNCNAME%(0,7,1), 0.0, -3, 0, 1, 2, 17, -1

SET,%_FNCNAME%(0,8,1), 0.0, -1, 0, 1, 18, 3, 1

SET,%_FNCNAME%(0,9,1), 0.0, -4, 0, 1, 3, 2, -1

SET,%_FNCNAME%(0,10,1), 0.0, -1, 0, 2, 0, 0, -4

SET,%_FNCNAME%(0,11,1), 0.0, -5, 0, 1, -4, 17, -1

SET,%_FNCNAME%(0,12,1), 0.0, -1, 0, 1, -3, 1, -5

SET,%_FNCNAME%(0,13,1), 0.0, -3, 0, 1, -2, 3, -1

SET,%_FNCNAME%(0,14,1), 0.0, -1, 0, 2, 0, 0, 19

SET,%_FNCNAME%(0,15,1), 0.0, -2, 0, 1, 19, 17, -1

SET,%_FNCNAME%(0,16,1), 0.0, -1, 0, 1, -3, 4, -2

SET,%_FNCNAME%(0,17,1), 0.0, -1, 7, 1, -1, 0, 0

SET,%_FNCNAME%(0,18,1), 0.0, -2, 0, 1, 17, 3, -1

SET,%_FNCNAME%(0,19,1), 0.0, 99, 0, 1, -2, 0, 0

! End of equation: Qmexp(-3({X}^2+({Y}-V{TIME})^2)/R^2)

TUNIF,20, !定义初始温度

!定义对流换热边界

SFA,15,1,CONV,30,20

SFA,20,1,CONV,30,20

SFA,9,1,CONV,30,20

SFA,14,1,CONV,30,20

SFA,19,1,CONV,30,20

SFA,24,1,CONV,30,20

SFA,23,1,CONV,30,20

SFA,7,1,CONV,30,20

SFA,12,1,CONV,30,20

SFA,17,1,CONV,30,20

SFA,22,1,CONV,30,20

SFA,1,1,CONV,30,20

SFA,2,1,CONV,30,20

SFA,3,1,CONV,30,20

SFA,4,1,CONV,30,20

!施加高斯热源

SFA,5,1,HFLUX, %GAOSI%

SFA,10,1,HFLUX, %GAOSI%

OUTRES,ALL,ALL,

TIME,L/V !设置求解时间

AUTOTS,-1

NSUBST,50,50,50

KBC,0

TSRES,ERASE

LSWRITE,1, !写入载荷文件为1

!

TIME,20

AUTOTS,1

NSUBST,20,20,20

KBC,0

!

TSRES,ERASE

LSWRITE,2,

TIME,50

AUTOTS,1

NSUBST,30,30,30

KBC,0

!

TSRES,ERASE

LSWRITE,3,

TIME,1100

AUTOTS,1

NSUBST,105,105,105

KBC,0

!

TSRES,ERASE

LSWRITE,4,

LSSOLVE,1,4,1, !开始求解

关于ANSYS模拟的请求,知道一块板温度分布,如何利用ansys计算得到它的热导率?跪求

根据公式:q/A=-k dT/dz ,可计算出导热系数。其中,q为热功率,A为导热方向面积,k为材料导热系数,dT为温度变化,dz为导热长度。Ansys软件中一般设定的为热流密度f,即f=q/A,即:f=-k dT/dz , 则k=- dz/dT f

ansys如何计算通电导线的生热率?

电导线的生热率明显涉及两种求解,一个就是通电,导致电学分析,一个就是生热,导致热分析!因此,本人建议使用电热耦合方式来求解,也就是ansys提供的场耦合技术。电热分析有好几类,下面看看:

This ysis, ailable in the ANSYS Multiphysics product, can account for the following thermoelectric effects:

Joule heating - Heating occurs in a conductor carrying an electric current. Joule heat is proportional to the square of the current, and is independent of the current direction.

Seebeck effect - A voltage (Seebeck EMF) is produced in a thermoelectric material by a temperature difference. The induced voltage is proportional to the temperature difference. The proportionality coefficient is know as the Seebeck coefficient (α).

Peltier effect - Cooling or heating occurs at the junction of two dissimilar thermoelectric materials when an electric current flows through the junction. Peltier heat is proportional to the current, and changes sign if the current direction is reversed.

Thomson effect - Heat is absorbed or released in a non-uniformly heated thermoelectric material when electric current flows through it. Thomson heat is proportional to the current, and changes sign if the current direction is reversed.

Typical applications include heating coils, fuses, thermocouples, and thermoelectric coolers and generators. For more information, refer to Thermoelectrics in the Theory Reference for ANSYS and ANSYS Workbench.

三维技术论坛

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息