1. 首页 > 智能数码 >

交换机的基本原理 交换机的基本原理和基本命令使用

交换机原理

原理:

交换机的基本原理 交换机的基本原理和基本命令使用交换机的基本原理 交换机的基本原理和基本命令使用


交换机工作于OSI参考模型的第二层,即数据链路层。交换机内部的CPU会在每个端口成功连接时,通过将MAC地址和端口对应,形成一张MAC表。在今后的通讯中,发往该MAC地址的数据包将仅送往其对应的端口,而不是所有的端口。因此,交换机可用于划分数据链路层广播,即冲突域;但它不能划分网络层广播,即广播域。

原理应用:

交换机是根据网桥的原理发展起来的,学习交换机先认识两个概念:

冲突域:

冲突域是数据必然发送到的区域。HUB是无智能的信号驱动器,有入必出,整个由HUB组成的网络是一个冲突域。交换机的一个接口下的网络是一个冲突域,所以交换机可以隔离冲突域。

广播域:

广播数据时可以发送到的区域是一个广播域。交换机和集线器对广播帧是透明的,所以用交换机和HUB组成的网络是一个广播域。路由器的一个接口下的网络是一个广播域。所以路由器可以隔离广播域。

交换机的原理是什么?

交换机的原理是通过存储转发(Store-and-Forward)技术,将数据包从源交换机传输到目的交换机。

在传统的共享式以太网中,每台主机都连接到一个共享的总线上,数据包在总线上进行传输。当一个数据包到达交换机时,交换机会将该数据包存储在自身的缓存中,并发送一个确认帧给该数据包的源主机。当源主机确认接收到该数据包后,交换机就将该数据包从缓存中删除,并将确认帧发送给源主机。这个过程会一直重复,直到该数据包被转发到目的主机。

存储转发技术使得交换机可以同时处理多个数据包,但是每个数据包必须先被存储在交换机的缓存中,并获得一个确认帧后才能被转发。这种技术提高了交换机的带宽和吞吐量,但是也增加了交换机的复杂性和成本。

除了存储转发技术,交换机还有其他一些原理,比如多通道交换和千兆以太网技术等。

交换机的工作原理

交换机的工作原理是数据传输基于OSI七层模型,而交换机就工作于其第二层,即数据链路层。

在计算机网络中,数据传输需要一定的规范和步骤,而OSI七层模型就是为了规范和简化数据传输而设计的。其七层分别为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,因为,交换机每一层都有自己的功能和任务。

其中数据链路层是第二层,它主要的任务是传输有重要性的数据,保证数据的完整性和可靠性。交换机正是基于OSI七层模型的数据链路层而工作的。交换机通过物理端口连接多个设备,并且可以识别这些设备的MAC地址。

交换机的特色功能

1、物理层面:交换机通过物理连接将网络设备连接在一起。它具有多个端口,每个端口都支持网络设备的连接。数据包在网络中通过交换机之间的端口进行传输。

2、逻辑层面:设备的MAC地址被存储在这个地址表中。当数据包到达交换机时,交换机会将其源MAC地址指定给该接口,在地址表中查找该地址,并将数据包转发到适当的接口。

3、过滤器功能:交换机是一种智能设备,它能够检查数据包的目标MAC地址并确定是否将其转发到相应的接口。以便识别它们是否处于同一子网中。

交换机的工作原理

交换机的工作原理 一、交换机的工作原理

1、交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。

2、交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。

3、如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称为泛洪(flood)。

4、广播帧和组播帧向所有的端口转发。

二、交换机的三个主要功能

以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。

转发/过滤:当一个数据帧的目的地址在MAC地址表中有映射时,它被转发到连接目的节点的端口而不是所有端口(如该数据帧为广播/组播帧则转发至所有端口)。

消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。

三、交换机的工作特性

1、交换机的每一个端口所连接的网段都是一个独立的冲突域。

2、交换机所连接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(惟一的例外是在配有VLAN的环境中)。

3、交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备(此处所述交换机仅指传统的二层交换设备)。

四、交换机的分类

依照交换机处理帧时不同的作模式,主要可分为两类:

存储转发:交换机在转发之前必须接收整个帧,并进行错误校检,如无错误再将这一帧发往目的地址。帧通过交换机的转发时延随帧长度的不同而变化。

直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。

五、二、三、四层交换机

多种理解的说法:

二层交换(也称为桥接)是基于硬件的桥接。基于每个末端站点的`MAC地址转发数据包。二层交换的高性能可以产生增加各子网主机数量的网络设计。其仍然有桥接所具有的特性和限制。

三层交换是基于硬件的路由选择。路由器和第三层交换机对数据包交换作的主要区别在于物理上的实施。

四层交换的简单定义是:不仅基于MAC(第二层桥接)或源/目的地IP地址(第三层路由选择),同时也基于TCP/UDP应用端口来做出转发决定的能力。其使网络在决定路由时能够区分应用。能够基于具体应用对数据流进行优先级划分。它为基于策略的服务质量技术提供了更加细化的解决方案。提供了一种可以区分应用类型的方法。

交换机的作用及工作原理是什么?

功能:

1、像集线器一样,交换机提供了大量可供线缆连接的端口,这样可以采用星型拓扑布线。

2、像中继器、集线器和网桥那样,当它转发帧时,交换机会重新产生一个不失真的方形电信号。

3、像网桥那样,交换机在每个端口上都使用相同的转发或过滤逻辑。

4、像网桥那样,交换机将局域网分为多个冲突域,每个冲突域都是有独立的宽带,因此大大提高了局域网的带宽。

5、除了具有网桥、集线器和中继器的功能以外,交换机还提供了更先进的功能,如虚拟局域网(VLAN)和更高的性能。

原理

交换机工作于OSI参考模型的第二层,即数据链路层。交换机内部的CPU会在每个端口成功连接时,通过将MAC地址和端口对应,形成一张MAC表。

在今后的通讯中,发往该MAC地址的数据包将仅送往其对应的端口,而不是所有的端口。因此,交换机可用于划分数据链路层广播,即冲突域;但它不能划分网络层广播,即广播域。

交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上;

通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在,广播到所有的端口,接收端口回应后交换机会“学习”新的MAC地址,并把它添加入内部MAC地址表中。

使用交换机也可以把网络“分段”,通过对照IP地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的减少冲突域。

工作方式

当一台交换机安装配置好之后,其工作过程如下:

1、收到某网段(设为A)MAC地址为X的计算机发给MAC地址为Y的计算机的数据包。交换机从而记下了MAC地址X在网段A。这称为学习(learning)。

2、交换机还不知道MAC地址Y在哪个网段上,于是向除了A以外的所有网段转发该数据包。这称为泛洪(flooding)。

3、MAC地址Y的计算机收到该数据包,向MAC地址X发出确认包。交换机收到该包后,从而记录下MAC地址Y所在的网段。

4、交换机向MAC地址X转发确认包。这称为转发(forwarding)。

5、交换机收到一个数据包,查表后发现该数据包的来源地址与目的地址属于同一网段。交换机将不处理该数据包。这称为过滤(filtering)。

6、交换机内部的MAC地址-网段查询表的每条记录采用时间戳记录一次访问的时间。早于某个阈值(用户可配置)的记录被清除。这称为老化(aging)。

以上内容参考

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息