1. 首页 > 电脑手机 >

微积分的应用 微积分的应用范围

微积分的实际应用

分部积分法优先顺序是反对幂指三,分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。

个人认为:微积分本质上是对连续问题分散化,然后求和。(主要还是求和)

微积分的应用 微积分的应用范围微积分的应用 微积分的应用范围


比如求路程:匀速运动可以直接用S=vt 但当速度是一个变量的时候呢?普遍的公式就不那么方便了(这里注意,不是公式不对,而是不方便求解了,本质上还是S=vt,来求位移)

所以速度为变量微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。时,我们就要通过建立v与t两个变量间的关系,也就是速度随着时间的变化方式,即v=v(t)这样在通过积分的方法求出。 这里面的积分其实就是吧时间t微元话,在极小的 t

(即dt)里面认为速度是不变的,然后求出各个dt间的dS,累加(积分)得到S。

微积分到底是什么

微积分是数学概念,高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支,它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。

积分学早期史

公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了篇积分学的文献。他是历史上伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分思想。

公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。问题中就隐含着近代积分的思想。

学微积分有什么用?

解:根据题意得,该厂每月生产x件机械产品的总收入函数为 。因此,该厂生产的x件产品的利润函数为: ,由此可得边际利润函数为 ,那么每月该厂生产6件、9件、15件、24件时的边际利润分别是: (千元/件), (千元/件), (千元/件), (千元/件)。

微积分是与实际应用联系着发展起来的,它在天文学、……力学、化学、生物学、工程学、经济学等自然科学、科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的的一个创造。

微积分是啥?

3,很多情况下,仅知道状况是远远不够的,必须预测趋势(类似于微分);

物理,数学例4:设生产 个产品的边际成本 ,其固定成本为 元,产品的单价规定为500元.假设产销平衡,问生产量为多少时利润,并求出利润。等学科只能处理均匀的,比如密度均匀的球质量可求,但是不均匀的就不能求了。

微积分分为微分和积分

微积分作用就是把不均匀的无限细分(微分),然后把每一个当作均匀的求出所求的量,把这些求和(积分)。比如不均匀的球,把它分成无限小的各个部分,然后把其中每个部分当作密度均匀的(各部分之间密度可能不同)求出该部分的质量,然后所有部分相加,就是整个球的质量。微积分应用很广泛,不只是求解这么简单的问题。

微积分在经济学中的应用

微积分学是微分学和积分学的总称。

【摘要】微积分是高等数学伟大的成就之一,在日常生活的各个领域都有着广泛的应用。利用高等数学微积分的数学定量来分析和解决各领域方面的理由己成为经济学中的一个重要部分,它使经济学由定性走向定量化,这使得微积分在经济领域中的作用越来越明显。

微积分是高等数学的伟大成就。微积分产生于生产技术和理论科学,同时又影响着科技的发展。

在经济学的领域内,将一些经济理由利用相关模型转化为数学理由,用数学的策略对经济学理由进行研究和分析,把经济活动中的实际理由利用微积分的策略进行量化,在此基础上得到的结果具有科学的量化依据。

1.1边际分析

解:根据题意得,销售这种产品 吨的总收益函数为 。因而,销售60吨该产品的边际收益是 元。其经济学含义是:当该产品的销售量为60吨时,销售量再增加一吨(即 =1)所增加的总收益是188元。这个理由看起来很简单,但是在实际生活中的应用作用很大。又如:

例2:某工厂生产某种机械产品,每月的总成本C(千元)与产量x(件)之间的函数关系为 ,若每件产品的销售价为2万元,求每月生产6件、9件、156件、24件时的边际利润,并说明其经济含义。

这个经济学的含义是:当该厂月产量为6件时,若再增产1件,此时的利润将会增加18000元;当该厂的月产量为9件时,若再增产1件,利润将增加12000元,有所降低;当月产量增加到15件时,再增产1件,利润反而不会增加;当月产量为24件时,若再增产1件,此时的利润反而会相应的减少18000元。

由此我们可以得出结论,产品的利润,并不是出现在量的时候,也就是说多增加产量必定能够增加利润,只有合理统筹安排工厂的生产量,这样才能取得的利润。

由此可得结论,当产品的边际收益等于产品的边际成本时,此时就已经达到了利润,如果再进行扩大生产了,产品反而会亏本。

在经济学中,某变量对另一个变量变化的反映程度称为弹性或弹性系数[2]。

在经济工作中有很多种的弹性,研究的理由不同,弹性的种类也不同。如果是价格的变化与需求之间的反映,这个反映我们称为需求弹性。由于消费需求的不同以及商品自身属性的异,同样的价格变化给不同的商品的需求带来不同的影响。有些商品反应很灵敏,弹性大,价格的变动会造成很大的销售变动;有的商品反应较缓慢,弹性小,价格的变动对其没什么影响。

①需求弹性。对于需求函数 ,由于价格上涨时,商品的需求函数 为具有一定单调性,是一个单调减函数, 与 异号,所以定义需求对价格的弹性函数为 。

解: , ,说明当 时,价格上涨1%,需求减少0.6%,需求变动的幅度小于价格变动的幅度; ,说明当 时,价格上涨1%,需求也减少1%,需求变动的幅度与价格变动的幅度是相同的; ,说明当 时,价格上涨1%,需求减少1.4%,需求变动的幅度大于价格变动的幅度。

②收益弹性。收益R是商品的价格 与其销售量Q的乘积。在任何的价格水平条件下,收益弹性与需求弹性之和总是等于1。若 时,商品的价格上涨(或下降)1%,收益增加(或减少) ;若 时,价格变动1%,收益不变;若 时,价格上涨(或下降)1%,收益减少(或增加) 。

1.3值分析

在生产理论中,研究长期生产理由通常主要是以两种可变生产要素的生产函数来表示[3]。假如企业利用劳动和资本这两种可变的生产要求来生产一种产品,那么可变生产要求的生产函数是:

假定生产要素市场上核定的劳动的价格即工资率为ω,核定的资本的价格即利息率为r,产品厂商核定的成本支出为C,则依据相关函数可得成本方程为: ,C 在一定的条件限制下,即: ,由此建立的拉客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。格朗日方程:

产品产量化的一阶条件为: ,

由以上两式可得: ,由此得出核定条件下要想实现产量的要素组合原则是:即产品的厂商不断通过对劳动和资本这两种可变要素投入量的调整,使得一单位的成本支出不管用来购买哪种生产要素所获得的边际产量都是的,从而实现核定成本条件下的产量化。

1.4 化分析

边际分析研究的是函数边际点上的极值[4]。也就是来研究变量在边际点是递增变为递减,还是由递减变为递增,像这种边际点的函数值就是函数的极大值或极小值。经济研究的重点就是研究边际点是的点,因为这是做出决策的合理的边际点。因此,微积分法是研究化理由是必不可少的策略。

化理论是经济学中经济分析的基础,也是进行经济决策的依据。实现经济学的化,就是要求经济学中的一切经济活动都处于的顶峰位置,任何一点偏离都要从顶峰向下倾斜,这个必定会用到微分的思想。

解:总成本函数为,总收益函数为 ,总利润 , ,令 ,得 。因为 ,所以当生产量为200个时,利润,利润为L(200)=400 200-200 200-1000=39000(元)。

2.总结

微积分在经济学中的地位是非常重要的。现如今在经济学领域,很多经济学研究均需要量化研究,所以越来越多地运用到了微积分的知识,这不但有利于微积分的发展,还能够帮助经济学更加的定量化、精密化和准确化。

微积分在经济学中的应用使得经济学得到重大发展,并终导致了微观经济学的形成。

[1]陈朝斌.微积分在经济学化理由中的应用[J].保山师专学报,2009(5):34-36.

[2]张丽玲.微积分在经济学中的应用[J].百色学院学,2009(5):49-52.

[3]蔡洪新.微积分在经济学中的应用分析[J].数学学习与研究,2010(9):99-100.

[4]向菊敏.微积分在经济分析活动中的应用[J].科技信息,2011(26):57-82.

微积分在医学上的应用

微积分在医学上的应用如下微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。:

随着现代科学技术的发展和电子计算机的应用与普及,数学方法在学中的应用日益广泛和深入。学科逐步由传统的定性描述阶段向定性、定量分析相结合的新阶段发展。数学方法为科学研究的深入发展提供了强有力的工具。

高等数学是医学院校开设的重要基础课程,下文仅例举一些用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强公式中L为可变要求劳动的投入量多少,K为可变要求资本的投入量的多少,Q为产品的产量。生产的产品厂商可以通过对两个投入的可变生产要素的'不断调整来实现一定成本条件下的产量的生产要素组合。化应用数学解决实际问题的意识。

例1 脉管稳定流动的血流量设有半径为R,长度为L的一段血管,左端为相对动脉端,血压为1P.右端为相对静脉端,血压为2P(12PP>)取血管的一个横截面,求单位时间内通过血管横截面的血流量Q。

分析利用微元法,在取定的横截面任取一个内径为r,外径为rdr+(圆心在血管中心)的小圆环作为研究问题的微元,它的面积近似等于2πrdr,假定血管中血液流动是稳定的,此时血管中血液在各点处的流速v是各点与血管中心距离r的函数,血流量等于流速乘以面积。

因此,可以求得在在单位时间内,通过该环面的血流量dQ的近似值,进而求得该横截面的血流量Q。

微积分在实际中的应用

论述高等数学的应用如下:

在生活中可能用不上,但是在工厂企业的

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。科研生产中还是有很大的作用。比如

对零件计算其形状,面积,体积,

直线拟合,曲线拟合,曲面拟合。

建筑中的用土量,梯度,坡度。。。

比如军事中计算的弹道,时间,距离。。。

比如神七飞船,燃料量,飞行轨迹,变轨方程。。。

微积分是基础,公式可以忘记,基本概念不要忘记。

基本用不上

请问微积分是研究什么的?

微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。

极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的的一个创造。

这个问题一直到十九世纪下半叶才由法国数学家柯西得到了完整的解决,柯西极限存在准则使得微积分注入了严密性,这就是极限理论的创立。极限理论的创立使得微积分从此建立在一个严密的分析基础之上,它也为20世纪数学的发展奠定了基础。微积分学的建立

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的值和小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,由某个人或几个人总结完成的。微积分也是这样。

不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西……

欧氏几何也好,上古和中世纪的代数学也例3:设某种商品的需求函数为 ,求需求的弹性函数; , , 的需求弹性。好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

微积分的基本内容

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。

本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

微积分是与应用联系着发展起来的,初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

微积分是什么意思

1.2弹性分析

微积分是高等数学中研究只要你不当老师和科学家。那是一点用也没有。你说一个在街边推销的。学那有啥意思函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分历史:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息