1. 首页 > 电脑手机 >

mosfet的vgs与什么有关 mos管vgs电压怎么算

视频

mosfet的vgs与什么有关 mos管vgs电压怎么算mosfet的vgs与什么有关 mos管vgs电压怎么算


MOS管工作原理 - 知乎 先一张图概括作用:

Mos管增强型和耗尽型

增强型场效应管

所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间形成的电容电场作用,将靠近栅极下方的P型半导体中的多子空穴向下方排斥,出现了一薄层负离子的耗尽层;同时将吸引其中的少子向表层运动,但数量有限,不足以形成导电沟道,将漏极和源极沟通,所以仍然不足以形成漏极电流ID。进一步增加VGS,当VGS>VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,所以,这种MOS管称为增强型MOS管。VGS对漏极电流的控制关系可用iD=f(VGS(th))|VDS=const这一曲线描述,称为转移特性曲线,如下图

增强型场效应管工作原理

(1)N沟道增强型场效应管

N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极(漏极D、源极S)。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底,用符号B表示。栅源电压VGS的控制作用:当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。

N沟道增强型MOSFET的结构示意图,如下图所示。它是用一块掺杂浓度较低的P型硅片作为衬底,利用扩散工艺在衬底上扩散两个高掺杂浓度的N型区(用N+表示),并在此N型区上引出两个欧姆接触电极,分别称为源极(用S表示)和漏极(用D表示)。在源区、漏区之间的衬底表面覆盖一层二氧化硅(SiO2)绝缘层,在此绝缘层上沉积出金属铝层并引出电极作为栅极(用G表示)。从衬底引出一个欧姆接触电极称为衬底电极(用B表示)。由于栅极与其它电极之间是相互绝缘的,所以称它为绝缘栅型场效应管。

当栅极G和源极S之间不加任何电压,即UGS=0时,由于漏极和源极两个N+型区之间隔有P型衬底,相当于两个背靠背连接的PN结,它们之间的电阻高达1012W的数量级,也就是说D、S之间不具备导电的沟道,所以无论漏、源极之间加何种极性的电压,都不会产生漏极电流ID。

当将衬底B与源极S短接,在栅极G和源极S之间加正电压,即UGS﹥0时,如下图(a)所示,则在栅极与衬底之间产生一个由栅极指向衬底的电场。在这个电场的作用下,P衬底表面附近的空穴受到排斥将向下方运动,电子受电场的吸引向衬底表面运动,与衬底表面的空穴复合,形成了一层耗尽层。如果进一步提高UGS电压,使UGS达到某一电压UT时,P衬底表面层中空穴全部被排斥和耗尽,而自由电子大量地被吸引到表面层,由量变到质变,使表面层变成了自由电子为多子的N型层,称为“反型层”,如下图(b)所示。反型层将漏极D和源极S两个N+型区相连通,构成了漏、源极之间的N型导电沟道。把开始形成导电沟道所需的UGS值称为阈值电压或开启电压,用UT表示。显然,只有UGS﹥UT时才有沟道,而且UGS越大,沟道越厚,沟道的导通电阻越小,导电能力越强。这就是为什么把它称为增强型的缘故。

在UGS﹥UT的条件下,如果在漏极D和源极S之间加上正电压UDS,导电沟道就会有电流流通。漏极电流由漏区流向源区,因为沟道有一定的电阻,所以沿着沟道产生电压降,使沟道各点的电位沿沟道由漏区到源区逐渐减小,靠近漏区一端的电压UGD最小,其值为UGD=UGS-UDS,相应的沟道最薄;靠近源区一端的电压最大,等于UGS,相应的沟道最厚。这样就使得沟道厚度不再是均匀的,整个沟道呈倾斜状。随着UDS的增大,靠近漏区一端的沟道越来越薄。

当UDS增大到某一临界值,使UGD≤UT时,漏端的沟道消失,只剩下耗尽层,把这种情况称为沟道“预夹断”,如下图(a)所示。继续增大UDS(即UDS>UGS-UT),夹断点向源极方向移动,如下图(b)所示。尽管夹断点在移动,但沟道区(源极S到夹断点)的电压降保持不变,仍等于UGS-UT。因此,UDS多余部分电压[UDS-(UGS-UT)]全部降到夹断区上,在夹断区内形成较强的电场。这时电子沿沟道从源极流向夹断区,当电子到达夹断区边缘时,受夹断区强电场的作用,会很快的漂移到漏极.(插图对电导的影响)、

(2)P沟道增强型场效应管

P沟道增强型MOS管的结构示意图,通过光刻、扩散的方法或其他手段,在N型衬底(基片)上制作出两个掺杂的P区,分别引出电极(源极S和漏极D),同时在漏极与源极之间的SO绝缘层上制作金属,称为栅极G。

在正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏心极对源极的电压Vds应为负值,以保证两个P区与衬底之间的PN结均为反偏。

耗尽型场效应管

耗尽型MOS场效应管,是在制造过程中,预先在SiO2绝缘层中掺入大量的正离子,因此,在UGS=0时,这些正离子产生的电场也能在P型衬底中“感应”出足够的电子,形成N型导电沟道。当UDS>0时,将产生较大的漏极电流ID。如果使UGS<0,则它将削弱正离子所形成的电场,使N沟道变窄,从而使ID减小。当UGS更负,达到某一数值时沟道消失,ID=0。使ID=0的UGS我们也称为夹断电压,仍用UP表示。UGS

耗尽型场效应管工作原理

(1)N沟道耗尽型场效应管

沟道耗尽型MOSFET的结构与增强型MOSFET结构类似,只有一点不同,就是N沟道耗尽型MOSFET在栅极电压uGS=0时,沟道已经存在。该N沟道是在制造过程中应用离子注入法预先在衬底的表面,在D、S之间制造的,称之为初始沟道。N沟道耗尽型MOSFET的结构和符号如图1.(a)所示,它是在栅极下方的SiO2绝缘层中掺入了大量的金属正离子。所以当VGS=0时,这些正离子已经感应出反型层,形成了沟道。于是,只要有漏源电压,就有漏极电流存在。当VGS>0时,将使ID进一步增加。VGS<0时,随着VGS的减小漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压,用符号VGS(off)表示,有时也用VP表示。N沟道耗尽型MOSFET的转移特性曲线 (插图)

由于耗尽型MOSFET在uGS=0时,漏源之间的沟道已经存在,所以只要加上uDS,就有iD流通。如果增加正向栅压uGS,栅极与衬底之间的电场将使沟道中感应更多的电子,沟道变厚,沟道的电导增大。

如果在栅极加负电压(即uGS<0=,就会在相对应的衬底表面感应出正电荷,这些正电荷抵消N沟道中的电子,从而在衬底表面产生一个耗尽层,使沟道变窄,沟道电导减小。当负栅压增大到某一电压Up时,耗尽区扩展到整个沟道,沟道完全被夹断(耗尽),这时即使uDS仍存在,也不会产生漏极电流,即iD=0。UP称为夹断电压或阈值电压,其值通常在–1V–10V之间N沟道耗尽型MOSFET的结构图和转移特性曲线分别如图所示。

(2)P沟道耗尽型场效应管

P沟道MOSFET的工作原理与N沟道MOSFET完全相同,只不过导电的载流子不同,供电电压极性不同而已。这如同双极型三极管有NPN型和PNP型一样。

MOSFET,即金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor),是一种可以广泛使用在模拟电路与数字电路的场效晶体管。

MOSFET依照其“通道”(工作载流子)的极性不同,可分为“N型”与“P型”的两种类型,通常又称为NMOSFET与PMOSFET,其他简称上包括NMOS、PMOS等。

工作原理

金氧半场效晶体管在结构上以一个金属—氧化物层—半导体的电容为核心(金氧半场效晶体管多半以多晶硅取代金属作为其栅极材料),氧化层的材料多半是二氧化硅,其下是作为基极的硅,而其上则是作为栅极的多晶硅。

这样的结构正好等于一个电容器,氧化层为电容器中介电质,而电容值由氧化层的厚度与二氧化硅的介电系数来决定。栅极多晶硅与基极的硅则成为MOS电容的两个端点。

当一个电压施加在MOS电容的两端时,半导体的电荷分布也会跟着改变。

pmos管的vgs同样也有正和负。mos管的vgs一般不常采用负电压关断,但是如果采用负电压,可以增加关断可靠性,还可以提高vds的耐压承受力。比如说+12v是开启mos,-5v是关闭mos。

如果两种Vod都大于零,说明晶体管沟道全开,也就是处于线性区。只有一种Vod大于零,说明晶体管沟道半开(在DS任意一端没打开有夹断),也就是处于饱和区。

扩展资料:

当CMOS被使用来作数字影像器材的感光元件使用,称有源像素感测器(Active Pixel Sensor), 例如高分辨率数字摄影机与数码相机,尤其是片幅规格较大的数码单反相机更常见到CMOS的应用。

另外消费型数码相机及附有照相功能的手机亦开始使用堆叠式有源像素感测器,Stacked CMOS,也有人译为积层式有源像素感测器或堆栈式有源像素感测器。

或背面照射式有源像素感测器(BSI CMOS),使成像质量得以提升。 跟传统的电荷耦合元件(CCD)相比,由于CMOS每粒像素都设有放大器,所以数据传输速度很高。

管的vgs一般不常采用负电压关断,但是如果采内用负电压,可以增容加关断可靠性,还可以提高vds的耐压承受力。

在视频监控设备日益增多的今天,VGS在监控系统中的应用,必然更加有利于帮助用户快速掌控前端设备运行情况,轻松运维大型视频监控系统。它适用于公安、银行、交通、电力、监狱等各大建设有视频监控系统的领域。

扩展资料:

对各路视频信号进行自动检测,利用先进的自适应学习算法和计算机智能视觉技术,仿真人类的视觉系统,对视频设备出现的连通故障、画面偏色、干扰噪声、雪花噪声、信号缺失、清晰度故障、亮度故障、画面冻结、场景变换等故障以及故障严重程度做出准确诊断。

同时,对故障原因进行智能分析,给出详尽的维修建议。系统根据诊断结果,自动分配运维工作,结合智能移动终端,快速定位查找故障设备位置,及时到达维修现场,并能跟踪运维事件的处理过程,及时反馈设备的维修情况。

参考资料来源:

mos管中G代表栅极,S代表源极。电压是相对的,所以Vgs是栅极相对于源极的电压。

Vgs 是栅极和源极间电压。这个电压决定mos处于什么状态。

Vgs 是MOS管栅极和源极间之间的电压。

首先 我们看你给的mos管 vds和 id的关系图 。饱和区电流基本不随ugs变化而变化的,也就是图中那个叠在一起的部分。(而恒流区是ugs不变,id不随uds的变化而变化的。区别一下)要想让mos管工作在饱和状态,那么你先要给定一个 vds ,这个肯定是已知的 就是你的供电电压 vcc 我猜你这个应该是vds 是10到12v 我们看图上 当vds=10v的时候 只有当 ugs 约大于9v之后,交点才在mos管的可变电阻区(饱和区) 所以说 要9v以上 才能让管子完全导通。4v是开启电压 望采纳啊

1,MOS管开关与否与VDS没有关系,开状态并不对应MOS管的饱和区。

2,你的理解正确,VGS只要大于阈值电压就算导通。

mosfet工作原理

MOSFET 基本工作原理

通过改变栅源电压VGS来控制沟道的导电能力,从而控制漏极电流ID。因此它是一个电压控制型器件。转移特性反映了栅源电压对漏极电流的控制能力 。NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

MOSFET就是以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管,其特点是用栅极电压来控制漏极电流。

以N沟道增强型NMOSFET为例,用一块P型硅半导体材料作衬底,在其面上扩散了两个N型区,再在上面覆盖一层二氧化硅(SiO2)绝缘层,最后在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极)。

Vds是场效应管漏极和源极间的电压,Vgs是栅极与源极间电压,指的是电压值不存在加减关系和电流方向。

导通是有电阻的,它又不是超导材料,连“导体”都不是,而是“半导体”,只要有电流流过,就有电压降,当电流达到某值,超过这时Vgs控制电压能够产生的电流量,才进入饱和区。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息