1. 首页 > 科技快讯 >

八年级上册角平分线的定义 八年级角平分线的定理

角平分线的性质是初中几年级的内容

角平分线的性质是初中八年级上册的内容。

八年级上册角平分线的定义 八年级角平分线的定理八年级上册角平分线的定义 八年级角平分线的定理


角平分线的性质是初中几何中很重要的一个定理,在实际解决几何问题当中有关角度和边的关系,其应用也比较广泛。在学习角的平分线性质时,需要掌握的重点内容为角平分线的尺规作图,也是初中尺规作图当中的重点内容。在具体的尺规作图当中,其作图的步骤该如何进行,则是尺规作图的重要方法体现,也是中考必考的重点内容。

其次为角平分线的性质定理的几何表达方式在实际的应用当中如何将角平分线的性质和推论理解透彻,并用在实际的解决问题当中,也就是搞清楚角平分线的性质,定理以及推论适用的范围,并且在解决几何问题时,如有条件符合,则通过作辅助线的方式来解决几何问题,则是这部分学习当中的重点内容对于几何问题解决思路提供了一类特殊的方法。

角平分线的性质在理解时,要通过数形结合的方法,也就是将定理的具体内容在图形上体现出来。特别用几何表达的方式来体现出角平分线定理的性质能够增强学生对几何思维能力的理解。要明白角平分线的性质及应用的条件:角的平分线点在该平分线上,点到角两边的距离为垂直距离。只要不满足其中之一,那么角平分线的性质定理就不能直接利用。

初二数学上册几何知识归纳

一看到几何,想必大家头都大了。觉得几何难学的时候,不妨整理好几何的知识点,自己研究,慢慢的弄懂。下面是我分享给大家的初二数学上册几何知识,希望大家喜欢!

初二数学上册几何知识一

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类

3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的小于第三边。

4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7、高线、中线、角平分线的意义和做法

8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9、三角形内角和定理:三角形三个内角的和等于180°

推论1直角三角形的两个锐角互余

推论2三角形的一个外角等于和它不相邻的两个内角和

推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11、三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

初二数学上册几何知识二

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1、两组对边平行的四边形是平行四边形。

2、性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3、判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4、对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1、定义:有一个角是直角的平行四边形叫做矩形

2、性质:矩形的四个角都是直角,矩形的对角线相等

3、判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4、对称性:矩形是轴对称图形也是中心对称图形。

初二数学上册几何知识三

菱形的定义、性质及判定

1、定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2、s菱=争6(n、6分别为对角线长)

3、判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4、对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2、性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3、判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4、对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4、对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

猜你喜欢:

1. 初中数学三角形知识点总结

2. 初二数学基本知识汇总

3. 初中数学知识点归纳

4. 初二年级数学公式知识点归纳

5. 八年级上册数学总复习题有哪些

角平分线的定义及性质

角平分线的定义及性质是怎样的?同学们清楚吗,不清楚的话,快来我这里了解了解。下面是由我为大家整理的“角平分线的定义及性质”,仅供参考,欢迎大家阅读。

角平分线的定义及性质

角平分线的定义

角平分线定义(Anglebisectordefinition)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线(bisectorofangle)。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。其它解释:角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。

角平分线的性质

在角的平分线上的点到这个角的两边的距离相等。

(逆定理)在一个角的内部(包括顶点)且到角的两边的距离相等的点在这个角的角平分线上。

1.角平分线可以得到两个相等的角。

2.角平分线上的点到角两边的距离相等。

3.三角形的三条角平分线交于一点,称作三角形内心。三角形的内心到三角形三边的距离相等。

4.三角形一个角的平分线,这个角平分线其对边所成的两条线段与这个角的两邻边对应成比例。

拓展阅读:《角平分线的性质》初二数学知识点

知识要点

1、角平分线的定义:从一个角的顶点出发把一个角分成两个相等的角的射线叫做角的平分线。

如下图:OC平分∠AOB

∵OC平分∠AOB

∴∠AOC=∠BOC

2、角的平分线的性质:角平分线上的点到角的两边的距离相等。【重点】

如第一个图:

∵OC平分∠AOB(或∠1=∠2),PE⊥OA,PD⊥OB

∴PD=PE,此时我们知道△OPE≌△OPD(直角三角形 斜边是OP即公共边,直角边斜边)

3、角的平分线的判定:角的内部到角的两边距离相等的点在角的平分线上。

如第一个图:

∵PE⊥OA,PD⊥OB,PD=PE

∴OC平分∠AOB(或∠1=∠2)

4、线段的中点的定义:把一条线段分成两条相等的线段的`点叫做线段的中点。

∵C是AB的中点

∴AC=BC

5、垂直的定义:两条直线相交所成的四个角中有一个是直角,这两条直线互相垂直。

如图:【重点】

∵AB⊥CD

∴∠AOC=∠AOD=∠BOC =∠BOD=90°

或∵∠AOC=90°

∴AB⊥CD

注意:要判断两条直线垂直,只要知道这两条相交直线所形成的四个角中的

一个角是直角就可以了。反过来,两条直线互相垂直,它们的四个交角都是直角。

6、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

∵△ABC≌△A'B'C'

∴AB=A'B',BC=B'C',AC=A'C'; ∠A=∠A', ∠B=∠B', ∠C=∠C'

初二角平分线的判定

关于初二角平分线的判定分享如下:如图所示,在△ABC中,点C是∠ABC和∠ACB的平分线的交点。求证:OA是∠BAC的平分线。

角平分线的判定方法:角的内部到角的两边的距离相等的点在角的平分线上。由于从已知中找不到合适的条件,所以需要添加辅助线来解决问题。因为在△ABC内部已经存在两条角平分线了,所以我们添加的辅助线就是交点到三角形的边的距离。即过点O作OD垂直BC于点D,作OE⊥AC于点E,作OF⊥AB于点F。

根据“角的平分线上的点到角的两边的距离相等”这个知识点,就可以证明OD=OE=OF。后利用“角的内部到角的两边的距离相等的点在角的平分线上”就能够证明本题结论。

证明:过点O作OD⊥BC于点D,作OE⊥AC于点E,作OF⊥AB于点F。∵OB平分∠ABC,OD⊥BC,OF⊥AB∴OD=OF(角的平分线上的点到角的两边的距离相等)∵OC平分∠ACB,OD⊥BC,OE⊥AC∴OD=OE∴OF=OE,则点O在∠BAC的角平分线上(角的内部到角的两边的距离相等的点在角的平分线上)∴OA是∠BAC的角平分线。

证明一条射线是角平分线有两种方法:一是利用三角形全等证明两角相等。二是利用角的内部到角的两边的距离相等的点在角的平分线上。

方法二要比方法一简捷,用方法二判定一条射线是一个角的平分线一般分两个步骤:第一步,找出或者作出射线上的一点到角两边的垂线段;第二步,证明这两条垂线段相等。练习:已知:如图,在△ABC中,BD=DC,∠1=∠2。求证:AD平分∠BAC。

证明角平分线判定方法

从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线,三角形三条角平分线的交点叫做三角形的内心。下面我给大家带来证明角平分线判定 方法 ,希望能帮助到大家!

证明角平分线判定方法

角的内部到角的两边距离相等的点,都在这个角的平分线上。

因此根据直线公理。

证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB

证明:在Rt△OPD和Rt△OPE中:

OP=OP,PD=PE

∴Rt△OPD≌Rt△OPE(HL)

∴∠1=∠2

∴ OC平分∠AOB

方法一:1.以点O为圆心,以任意长为半径画弧,两弧交角AOB两边 于点M,N。

2.分别以点M,N为圆心,以大于1/2MN的长度为半径画弧, 两弧交于点P。

3.作射线OP。

射线OP即为所求。

证明:连接PM,PN在△POM和△PON中

∵OM=ON,PM=PN,PO=PO

∴△POM≌△PON(SSS)

∴∠POM=∠PON,即射线OP为角AOB的角平分线当然,角平分线的作法有很多种。

方法二:1.在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD;

2.连接CN与DM,相交于P;

3.作射线OP。

射线OP即为所求。

证明角平分线判定定理

1.在角的内部,如果一条射线的端点与角的顶点重合,且把一个角分成两个相等的角,那么这条射线就是这个角的平分线。

2.在角的内部,到一个角两边距离相等的点在这个角的平分线上。

3.两个角有一条公共边,且相等。

定理1:角平分线上的点到这个角两边的距离相等。

逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

逆定理:如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。

证明角平分线判定性质

在三角形中的性质。

1.三角形的三条角平分线交于一点,且到各边的距离相等.这个点称为内心 (即以此点为圆心可以在三角形内部画一个内切圆)。

2.三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

若AD是△ABC的角平分线,则 BD/DC=AB/AC 。

证明:作CE∥AD交BA延长线于E。

∵CE∥AD

∴△BDA∽△BCE

∴BA/BE=BD/BC

∴ BA/AE=BD/DC

∵CE∥AD

∴∠BAD=∠E,∠DAC=∠ACE

∵AD平分∠BAC

∴∠BAD=∠CAD

∴ ∠BAD=∠CAD=∠ACE=∠E

即∠ACE=∠E

∴ AE=AC

又∵BA/AE=BD/DC

∴BA/AC=BD/DC

证明角平分线判定方法相关 文章 :

★ 角平分线的定义是什么

★ 人教版八年级数学上册第2课时角平分线的判定精选练习题

★ 八年级数学上册第2课时角平分线的判定精选练习题

★ 八年级数学三角形的证明知识点复习

★ 高中数学证明题技巧

★ 角平分线的教师教学反思

★ 角平分线教学反思【五篇】

★ 八年级数学上册学习步骤与教案全集

★ 初二八年级数学上学期期中试卷

★ 秋季学生八年级考试数学试卷

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息