1. 首页 > 科技快讯 >

简述气温日变化的规律_气温日变化规律和年变化规律

一天中的气温变化:如果是晴天,早上太阳刚升起前的气温往往是一天中最低的。随着太阳的升起给地面加热,到中午12点时太阳辐射最强,但是温度还不是最高的,最高气温出现在午后1-2个小时,即下午14时左右温度最高,接着温度逐渐降低且一直降低到第二天早上太阳刚升起前。

简述气温日变化的规律_气温日变化规律和年变化规律简述气温日变化的规律_气温日变化规律和年变化规律


晨起逐渐升温,至午后一两点最高,后逐渐下降,到夜间一两点最低。

晨凉午热(浓缩就是精华)

海拔升高100米下降摄氏0.6度。

通常用等温线图来表示气温的水平分布。等温线密集的地方,气bai温差别大;等温线稀疏的地方,气温差别小。

1、纬度分布:从赤道(低纬)向两极(高纬)逐渐降低。

2、海陆分布:同纬度地带,夏季陆地气温高,海洋气温低,冬季相反。

3、地形分布:气温随海拔升高逐渐降低,海拔每上升100米气温下降0.6度。

扩展资料;

在高海拔地区旅行时,空气压力较低,意味着空气中的氧气分子较少。专家说,海拔高度每提升304米,就会损失大约3%的氧气。2438米以上被定义为高海拔,这里呼吸一次得到的氧气分子大约少25%。氧气水平下降对人的人体有负面影响,并且身体会找出办法补偿氧气缺乏。

在海拔高度增加时,心跳率和呼吸率会提高。呼吸率是指每分钟呼吸多少次。在刚暴露于高海拔时,身体必须增加呼吸率以让身体得到更多氧气,并排出二氧化碳。与呼吸率一样,心跳率也 会增加,帮助将氧气泵压到全身。

参考资料来源:

一般来说,一天中气温的最高值出现在午后2点,气温的最低值出现在日出前后。一年中北半球陆地气温的最高值出现在7月,海洋气温最高值出现在8月;陆地气温的最低值出现在1月份,海洋气温最低值出现在2月份。

原因:1、近地面空气热量来自于地面的热辐射,从日出到中午12点正午太阳高度角最大时刻,地面吸收热量大于辐射热量,到午后2点,辐射量达到最大,气温最高;日出前后,地面热量丧失殆尽,所以气温最低值出现在日出前后。

2、同一纬度地区获得光热量多少相同,陆地和海洋同时升温,陆地升温速度快,海洋升温速度慢。所以,陆地气温最高值出现在7月份,海洋出现在8月份。降温时,陆地降温速度快,海洋降温速度慢。所以,海洋气温的最低值比陆地晚一个月,出现在2月份。

试述气温日变化和年变化的特点和原因

(一)气温的日变化大气边界层的温度主要受地表面增热与冷却作用的影响而发生变化。例如白天当地表面吸收了太阳辐射能而逐渐增热,通过辐射、分子运动、湍流及对流运动和潜热输送等方式将热量传递给边界层大气,使大气温度随之升高;夜间地表面因放射长波辐射而冷却,使边界层大气温度也随之降低。

因而引起边界层大气温度的日变化。而地表面对大气边界层温度的影响是与地表面的性质(森林、草原、沙漠、不同类型的土壤等)有关的。广阔洋面上的冷暖洋流也影响洋面上空的大气。此外,大气中的水平运动与垂直运动都会引起局地气温的变化。例如暖平流移来时,会使局地上空的气温升高。冷平流移来时则会使局地上空的气温下降。大气中的垂直运动使得垂直方向上热量分布趋于一致。当地表面受热时,垂直交换作用使地表面增热现象减弱。当地表面冷却时,交换作用使降温现象减小。近地层气温日变化的特征是:在一日内有一个最高值,一般出现在午后 14 时左右,一个最低值,一般出现在日出前后。

一天中气温的最高值与最低值之差,称为气温日较差,其大小反映气温日变化的程度。一天中正午太阳辐射最强,但最高气温却出现在午后两点钟左右。这是因为大气的热量主要来源于地面。地面一方面吸收太阳的短波辐射而得热,一方面又向大气输送热量而失热。若净得热量,则温度升高。若净失热量,则温度降低。这就是说地温的高低并不直接决定于地面当时吸收太阳辐射的多少,而决定于地面储存热量的多少。早晨日出以后随着太阳辐射的增强,地面净得热量,温度升高。此时地面放出的热量随着温度升高而增强,大气吸收了地面放出的热量,气温也跟着上升。到了正午太阳辐射达到最强。正午以后,地面太阳辐射强度虽然开始减弱,但得到的热量比失去的热量还是多些,地面储存的热量仍在增加,所以地温继续升高,长波辐射继续加强,气温也随着不断升高。

到午后一定时间,地面得到的热量因太阳辐射的进一步减弱而少于失去的热量,这时地温开始下降。地温的最高值就出现在地面热量由储存转为损失,地温由上升转为下降的时刻。这个时刻通常在午后13 时左右。由于地面的热量传递给空气需要一定的时间,所以最高气温出现在午后14 时左右。随后气温便逐渐下降,一直下降到清晨日出之前地面储存的热量减至最少为止。所以最低气温出现在清晨日出前后,而不是在半夜。气温日变化的另一特征是日较差的大小与纬度、季节和其它自然地理条件有关。日较差最大的地区在副热带,向两极减小。热带地区的平均日较差约为 12 ℃,温带约为 8 —9 ℃,极圈内为 3 —4 ℃。

日较差夏季大于冬季,但最大值并不出现在夏至日。这是因为气温日较差不仅与白天的最高温度值有关,还取决于夜间的最低温度值。夏至日,中午太阳高度角虽最高,但夜间持续时间短,地表面来不及剧烈降温而冷却,最低温度不够低。所以,中纬度地区日较差最大值出现在初夏,最小值出现在冬季。海洋上日较差小于大陆。盆地和谷地由于坡度及空气很少流动之故,白天增热与夜间冷却都较大,日较差大。而小山峰等凸出地形区,地表面对气温影响不大,日较差小。气温日较差还与地面的特性和天气情况等有关。例如沙漠地区日较差很大。潮湿地区日较差较小。

就天气情况来说,如果有云层存在,则白天地面得到的太阳辐射少,最高气温比晴天低。而在夜间,云层覆盖又不易使地面热量散失,最低气温反而比晴天高。所以阴天的气温日较差比晴天小。由此可见,在任何地点,每一天的气温日变化,既有一定的规律性,又不是前一天气温日变化的简单重复,而是要考虑上述诸因素的综合影响。气温日变化的极值出现时间随离地面的高度增大而后延,振幅随离地高度的增大而减小。冬季约在0.5km 高度处日振动已不明显,但夏季日振动可扩展到1.5km 到2km 高度处。

(二)气温的年变化气温的年变化和日变化在某些方面有着共同的特点,如地球上绝大部分地区,在一年中月平均气温有一个最高值和一个最低值。由于地面储存热量的原因,使气温最高和最低值出现的时间,不是在太阳辐射最强和最弱的一天 (北半球夏至和冬至),也不是在太阳辐射最强和最弱一天所在的月份 (北半球6 月和12 月),而是比这一时段要落后1 —2 个月。大体而论,海洋上落后较多,陆地上落后较少。沿海落后较多,内陆落后较少。就北半球来说,中、高纬度内陆的气温以7月为最高,1月为最低。海洋上的气温以 8月为最高,2 月为最低。一年中月平均气温的最高值与最低值之差,称为气温年较差。

气温年较差的大小与纬度、海陆分布等因素有关。赤道附近,昼夜长短几乎相等,最热月和最冷月热量收支相差不大,气温年较差很小;愈到高纬度地区,冬夏区分明显,气温的年较差就很大。例如我国的西沙群岛(16 °50 ’N )气温年较差只有 6 ℃,上海(31 °N )为 25 ℃,海拉尔(49 °13 ’N )达到 46.7 ℃。低纬度地区气温年较差很小,高纬度地区气温年较差可达40 —50 ℃。如以同一纬度的海陆相比,大陆区域冬夏两季热量收支的差值比海洋大,所以陆上气温年较差比海洋大得多。在一般情况下,温带海洋上年较差为11 ℃,大陆上年较差可达到20 —60 ℃。

根据温度年较差的大小及最高、最低值出现的时间,可将气温的年变化按纬度分为四种类型。 1. 赤道型它的特征是一年中有两个最高值,分别出现在春分和秋分以后,因赤道地区春秋分时中午太阳位于天顶。两个最低值出现在冬至与夏至以后,此时中午太阳高度角是一年中的最小值。这里的年较差很小,在海洋上只有 1 ℃ 左右,大陆上也只有 5 —10 ℃左右。这是因为该地区一年内太阳辐射能的收入量变化很小之故。 2. 热带型其特征是一年中有一个最高(在夏至以后)和一个最低(在冬至以后),年较差不大(但大于赤道型),海洋上一般为5 ℃,在陆地上约为20 ℃左右。 3. 温带型一年中也有一个最高值,出现在夏至后的7 月。

一个最低值出现在冬至以后的1 月。其年较差较大,并且随纬度的增加而增大。海洋上年较差为10 —15 ℃,内陆一般达40 —50 ℃,最大可达60 ℃。另外,海洋上极值出现的时间比大陆延后,最高值出现在8 月,最低值出现在2 月。 4. 极地型一年中也是一次最高值和一次最低值,冬季长而冷,夏季短而暖,年较差很大是其特征。这里特别要指出的是,随着纬度的增高,气温日较差减小而年较差却增大。这主要是由于高纬度地区,太阳辐射强度的日变化比低纬度地区小,即纬度高的地区,在一天内太阳高度角的变化比纬度低的地区小,而太阳辐射的年变化在高纬地区比低纬地区大的缘故。

大气温度随时间的变化

| [<<] [>>]

--------------------------------------------------------------------------------

(一)气温的日变化大气边界层的温度主要受地表面增热与冷却作用的影响而发生变化。例如白天当地表面吸收了太阳辐射能而逐渐增热,通过辐射、分子运动、湍流及对流运动和潜热输送等方式将热量传递给边界层大气,使大气温度随之升高;夜间地表面因放射长波辐射而冷却,使边界层大气温度也随之降低。

因而引起边界层大气温度的日变化。而地表面对大气边界层温度的影响是与地表面的性质(森林、草原、沙漠、不同类型的土壤等)有关的。广阔洋面上的冷暖洋流也影响洋面上空的大气。此外,大气中的水平运动与垂直运动都会引起局地气温的变化。例如暖平流移来时,会使局地上空的气温升高。冷平流移来时则会使局地上空的气温下降。大气中的垂直运动使得垂直方向上热量分布趋于一致。当地表面受热时,垂直交换作用使地表面增热现象减弱。当地表面冷却时,交换作用使降温现象减小。近地层气温日变化的特征是:在一日内有一个最高值,一般出现在午后 14 时左右,一个最低值,一般出现在日出前后(图2 ·30 )。

一天中气温的最高值与最低值之差,称为气温日较差,其大小反映气温日变化的程度。一天中正午太阳辐射最强,但最高气温却出现在午后两点钟左右。这是因为大气的热量主要来源于地面。地面一方面吸收太阳的短波辐射而得热,一方面又向大气输送热量而失热。若净得热量,则温度升高。若净失热量,则温度降低。这就是说地温的高低并不直接决定于地面当时吸收太阳辐射的多少,而决定于地面储存热量的多少。从图2 ·30 中看出,早晨日出以后随着太阳辐射的增强,地面净得热量,温度升高。此时地面放出的热量随着温度升高而增强,大气吸收了地面放出的热量,气温也跟着上升。到了正午太阳辐射达到最强。正午以后,地面太阳辐射强度虽然开始减弱,但得到的热量比失去的热量还是多些,地面储存的热量仍在增加,所以地温继续升高,长波辐射继续加强,气温也随着不断升高。

到午后一定时间,地面得到的热量因太阳辐射的进一步减弱而少于失去的热量,这时地温开始下降。地温的最高值就出现在地面热量由储存转为损失,地温由上升转为下降的时刻。这个时刻通常在午后13 时左右。由于地面的热量传递给空气需要一定的时间,所以最高气温出现在午后14 时左右。随后气温便逐渐下降,一直下降到清晨日出之前地面储存的热量减至最少为止。所以最低气温出现在清晨日出前后,而不是在半夜。气温日变化的另一特征是日较差的大小与纬度、季节和其它自然地理条件有关。日较差最大的地区在副热带,向两极减小。热带地区的平均日较差约为 12 ℃,温带约为 8 —9 ℃,极圈内为 3 —4 ℃。

日较差夏季大于冬季,但最大值并不出现在夏至日。这是因为气温日较差不仅与白天的最高温度值有关,还取决于夜间的最低温度值。夏至日,中午太阳高度角虽最高,但夜间持续时间短,地表面来不及剧烈降温而冷却,最低温度不够低。所以,中纬度地区日较差最大值出现在初夏,最小值出现在冬季。海洋上日较差小于大陆。盆地和谷地由于坡度及空气很少流动之故,白天增热与夜间冷却都较大,日较差大。而小山峰等凸出地形区,地表面对气温影响不大,日较差小。气温日较差还与地面的特性和天气情况等有关。例如沙漠地区日较差很大。潮湿地区日较差较小。

就天气情况来说,如果有云层存在,则白天地面得到的太阳辐射少,最高气温比晴天低。而在夜间,云层覆盖又不易使地面热量散失,最低气温反而比晴天高。所以阴天的气温日较差比晴天小(图2 ·31 )。由此可见,在任何地点,每一天的气温日变化,既有一定的规律性,又不是前一天气温日变化的简单重复,而是要考虑上述诸因素的综合影响。气温日变化的极值出现时间随离地面的高度增大而后延,振幅随离地高度的增大而减小。冬季约在0.5km 高度处日振动已不明显,但夏季日振动可扩展到1.5km 到2km 高度处。

(二)气温的年变化气温的年变化和日变化在某些方面有着共同的特点,如地球上绝大部分地区,在一年中月平均气温有一个最高值和一个最低值。由于地面储存热量的原因,使气温最高和最低值出现的时间,不是在太阳辐射最强和最弱的一天 (北半球夏至和冬至),也不是在太阳辐射最强和最弱一天所在的月份 (北半球6 月和12 月),而是比这一时段要落后1 —2 个月。大体而论,海洋上落后较多,陆地上落后较少。沿海落后较多,内陆落后较少。就北半球来说,中、高纬度内陆的气温以7月为最高,1月为最低。海洋上的气温以 8月为最高,2 月为最低。一年中月平均气温的最高值与最低值之差,称为气温年较差。

气温年较差的大小与纬度、海陆分布等因素有关。赤道附近,昼夜长短几乎相等,最热月和最冷月热量收支相差不大,气温年较差很小;愈到高纬度地区,冬夏区分明显,气温的年较差就很大。例如我国的西沙群岛(16 °50 ’N )气温年较差只有 6 ℃,上海(31 °N )为 25 ℃,海拉尔(49 °13 ’N )达到 46.7 ℃。图2 ·32 给出了不同纬度气温年变化的情况。低纬度地区气温年较差很小,高纬度地区气温年较差可达40 —50 ℃。如以同一纬度的海陆相比,大陆区域冬夏两季热量收支的差值比海洋大,所以陆上气温年较差比海洋大得多。在一般情况下,温带海洋上年较差为11 ℃,大陆上年较差可达到20 —60 ℃。

根据温度年较差的大小及最高、最低值出现的时间,可将气温的年变化按纬度分为四种类型。 1. 赤道型它的特征是一年中有两个最高值,分别出现在春分和秋分以后,因赤道地区春秋分时中午太阳位于天顶。两个最低值出现在冬至与夏至以后,此时中午太阳高度角是一年中的最小值。这里的年较差很小,在海洋上只有 1 ℃ 左右,大陆上也只有 5 —10 ℃左右。这是因为该地区一年内太阳辐射能的收入量变化很小之故。 2. 热带型其特征是一年中有一个最高(在夏至以后)和一个最低(在冬至以后),年较差不大(但大于赤道型),海洋上一般为5 ℃,在陆地上约为20 ℃左右。 3. 温带型一年中也有一个最高值,出现在夏至后的7 月。

一个最低值出现在冬至以后的1 月。其年较差较大,并且随纬度的增加而增大。海洋上年较差为10 —15 ℃,内陆一般达40 —50 ℃,最大可达60 ℃。另外,海洋上极值出现的时间比大陆延后,最高值出现在8 月,最低值出现在2 月。 4. 极地型一年中也是一次最高值和一次最低值,冬季长而冷,夏季短而暖,年较差很大是其特征。这里特别要指出的是,随着纬度的增高,气温日较差减小而年较差却增大。这主要是由于高纬度地区,太阳辐射强度的日变化比低纬度地区小,即纬度高的地区,在一天内太阳高度角的变化比纬度低的地区小,而太阳辐射的年变化在高纬地区比低纬地区大的缘故。

气温的日变化一般比较少,年温差变化一般比较大。因为一般是冬夏两季的温差很大,而日温差一般是中午和夜晚的温差比较,(当然部分地区例外,如戈壁地区,日温差很大的)。年温差大小取决于地区所在的纬度,一般中纬度地区年温差比较大。

日变化,最高气温是午后2时左右,最低气温是日出前后。年变化,北半球陆地上7月份最热1月最冷,海洋上8月份最热2月份最冷;南半球与北半球相反。

气温从低纬度向高纬度递减,因此等温线与纬线大体上平行。同纬度海洋陆地的气温是不同的。夏季等温线陆地上向高纬方向凸出,海洋向低纬方向凸出。

日气温最低时:2时,最高时:14时。

北半球最高气温:7月,最低:1月。

南半球最高气温:1月,最低:7月。

北半球陆地最高气温:7月,最低:1月。

北半球海洋最高气温:8月,最低:2月。

南半球陆地最高气温:1月,最低:7月。

南半球海洋最高气温:2月,最低:8月。

如下:

一天中气温随时间的连续变化,称气温的日变化。在一天中空气温度有一个最高值和一个最低值,两者之差为气温日较差。通常最高温度出现在午后两点,即地方时14时-15时,最低温度出现在日出前后(两分日地方时6时左右)。

受季节和天气的影响,出现时间可能提前也可能落后。比如,夏季最高温度大多出现在14-15时;冬季则在13-14时。由于纬度不同日出时间也不同,最低温度出现时间随纬度的不同也会产生差异。

气温日较差小于地表面土温日较差,并且气温日较差离地面越远则越小,最高、最低气温出现时间也越滞后。在农业生产上有时需要较大的气温日较差,这样有利于作物获得高产。

因为,日较差大就意味着白天温度较高,而夜间温度较低,这样白天叶片光合作用强,制造碳水化合物较多,而夜间呼吸消耗少,积累较多,作物产量高,含糖率高,品质好。

某地气温除了由于太阳辐射的变化而引起的周期性变化外,还有因大气的运动而引起的非周期性变化。实际气温的变化,就是这两个方面共同作用的结果。

如果前者的作用大,则气温显出周期性变化;相反,就显出非周期性变化。不过,从总的趋势和大多数情况来看,气温日变化和年变化的周期性还是主要的。热量平衡中各个分量,如辐射差额、潜热和显热交换等,都受不同的控制因子影响。

这些因子诸如纬度、季节等天文因子有着明显的地带性和周期的特性。而下垫面性质、地势高低,以及天气条件,如云量多少、大气干湿程度等,均带有非地带性特征。同时,不同地点,这些因子的影响也不相同,因而在热量的收支变化中引起的气温分布也呈不均匀性。

人类影响:

(1)城市下垫面(大气底部与地表的接触面)特性的影响

城市内大量人工构筑物如铺装地面、各种建筑墙面等,改变了下垫面的热属性。城市地表含水量少,热量更多地以显热形式进入空气中,导致空气升温。同时城市地表对太阳光的吸收率较自然地表高,能吸收更多的太阳辐射,进而使空气得到的热量也更多,温度升高。

(2)城市大气污染

城市中的机动车辆、工业生产以及大量的人群活动,产生了大量的氮氧化物、二氧化碳、粉尘等,这些物质可以大量地吸收环境中热辐射的能量,产生众所周知的温室效应,引起大气的进一步升温。

(3)人工热源的影响

工厂、机动车、居民生活等,燃烧各种燃料、消耗大量能源,无数个火炉在燃烧,都在排放热量。

(4)城市里的自然下垫面减少

城市的建筑、广场、道路等等大量增加,绿地、水体等自然因素相应减少,放热的多了,吸热的少了,缓解热岛效应的能力就被削弱了。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息